993 resultados para Astronomy and astrophysics
Resumo:
A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.
Resumo:
We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.
Resumo:
We present a new, accurate measurement of the H I mass function of galaxies from the HIPASS Bright Galaxy Catalog, a sample of 1000 galaxies with the highest H I peak flux densities in the southern (delta
Resumo:
We present results from a pilot study of a new wide-field, multicolour (BVR) CCD imaging project, designed to examine galaxy evolution along large-scale filaments that connect clusters of galaxies at intermediate redshifts (0.07 < z < 0.20). Our pilot data set is based on 0.56 deg(2) of observations targeted on Abell 1079 and Abell 1084 using the Wide Field Imager on the Anglo-Australian Telescope. We describe our data reduction pipeline and show that our photometric error is 0.04 mag. By selecting galaxies that lie on the colour-magnitude relation of the two clusters we verify the existence of a low-density (similar to3-4 Mpc(-2)) filament population, conjoining them at a distance of > 3r(Abell) from either cluster. By applying a simple field correction, we characterize this filament population by examining their colour distribution on a (V-R)-(B-V) plane. We confirm the galaxian filament detection at a 7.5 sigma level using a cut at M-V = -18 and we discuss their broad properties.
Resumo:
We present a new set of dissipationless N-body simulations to examine the feasibility of creating bright ellipticals (following the Kormendy relation, hereafter KR) by hierarchically merging present-day early-type dwarf galaxies, and to study how the encounter parameters affect the location of the end product in the (mu(e))-R-e plane. We investigate the merging of one-component galaxies of both equal and different masses, the merging of two-component galaxy models to explore the effect of dark haloes on the final galaxy characteristics, and the merging of ultracompact dwarf galaxies. We find that the increase of (mu(e)) with R-e is attributable to an increase in the initial orbital energy. The merger remnants shift down in the (mu(e))-R-e plane and fail to reach the KR. Thus, the KR is not reproducible by mergers of dwarf early-type systems, rendering untenable the theory that present-day dwarfs are responsible for even a small fraction of the present-day ellipticals, unless a considerable amount of dissipation is invoked. However, we do find that present-day dwarfs can be formed by the merger of ultracompact dwarfs.
Resumo:
Filaments of galaxies are known to stretch between galaxy clusters at all redshifts in a complex manner. In this Letter, we present an analysis of the frequency and distribution of intercluster galaxy filaments selected from the 2dF Galaxy Redshift Survey. Out of 805 cluster-cluster pairs, we find at least 40 per cent have bona fide filaments. We introduce a filament classification scheme and divide the filaments into several types according to their visual morphology: straight (lying on the cluster-cluster axis; 37 per cent), warped or curved (lying off the cluster-cluster axis; 33 per cent), sheets (planar configurations of galaxies; 3 per cent), uniform (1 per cent) and irregular (26 per cent). We find that straight filaments are more likely to reside between close cluster pairs and they become more curved with increasing cluster separation. This curving is toward a larger mass concentration in general. We also show that the more massive a cluster is, the more likely it is to have a larger number of filaments. Our results are found to be consistent with a cold dark matter cosmology.
Resumo:
Recently, very massive compact stellar systems have been discovered in the intracluster regions of galaxy clusters and in the nuclear regions of late-type disk galaxies. It is unclear how these compact stellar systems - known as ultracompact dwarf (UCD) galaxies or nuclear clusters (NCs) - form and evolve. By adopting a formation scenario in which these stellar systems are the product of multiple merging of star clusters in the central regions of galaxies, we investigate, numerically, their physical properties. We find that physical correlations among velocity dispersion, luminosity, effective radius, and average surface brightness in the stellar merger remnants are quite different from those observed in globular clusters. We also find that the remnants have triaxial shapes with or without figure rotation, and these shapes and their kinematics depend strongly on the initial number and distribution of the progenitor clusters. These specific predictions can be compared with the corresponding results of ongoing and future observations of UCDs and NCs, thereby providing a better understanding of the origin of these enigmatic objects.
Resumo:
The H I Parkes All Sky Survey (HIPASS) is a blind extragalactic H I 21-cm emission-line survey covering the whole southern sky from declination -90degrees to +25degrees. The HIPASS catalogue (HICAT), containing 4315 H I-selected galaxies from the region south of declination +2degrees, is presented in Meyer et al. (Paper I). This paper describes in detail the completeness and reliability of HICAT, which are calculated from the recovery rate of synthetic sources and follow-up observations, respectively. HICAT is found to be 99 per cent complete at a peak flux of 84 mJy and an integrated flux of 9.4 Jy km. s(-1). The overall reliability is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy or integrated flux >8.2 Jy km s(-1). Expressions are derived for the uncertainties on the most important HICAT parameters: peak flux, integrated flux, velocity width and recessional velocity. The errors on HICAT parameters are dominated by the noise in the HIPASS data, rather than by the parametrization procedure.
Resumo:
We present the largest catalogue to date of optical counterparts for H I radio-selected galaxies, HOPCAT. Of the 4315 H I radio-detected sources from the H I Parkes All Sky Survey (HIPASS) catalogue, we find optical counterparts for 3618 (84 per cent) galaxies. Of these, 1798 (42 per cent) have confirmed optical velocities and 848 (20 per cent) are single matches without confirmed velocities. Some galaxy matches are members of galaxy groups. From these multiple galaxy matches, 714 (16 per cent) have confirmed optical velocities and a further 258 (6 per cent) galaxies are without confirmed velocities. For 481 (11 per cent), multiple galaxies are present but no single optical counterpart can be chosen and 216 (5 per cent) have no obvious optical galaxy present. Most of these 'blank fields' are in crowded fields along the Galactic plane or have high extinctions. Isolated 'dark galaxy' candidates are investigated using an extinction cut of A(Bj) < 1 mag and the blank-fields category. Of the 3692 galaxies with an A(Bj) extinction < 1 mag, only 13 are also blank fields. Of these, 12 are eliminated either with follow-up Parkes observations or are in crowded fields. The remaining one has a low surface brightness optical counterpart. Hence, no isolated optically dark galaxies have been found within the limits of the HIPASS survey.
Resumo:
We present the results of applying automated machine learning techniques to the problem of matching different object catalogues in astrophysics. In this study, we take two partially matched catalogues where one of the two catalogues has a large positional uncertainty. The two catalogues we used here were taken from the H I Parkes All Sky Survey (HIPASS) and SuperCOSMOS optical survey. Previous work had matched 44 per cent (1887 objects) of HIPASS to the SuperCOSMOS catalogue. A supervised learning algorithm was then applied to construct a model of the matched portion of our catalogue. Validation of the model shows that we achieved a good classification performance (99.12 per cent correct). Applying this model to the unmatched portion of the catalogue found 1209 new matches. This increases the catalogue size from 1887 matched objects to 3096. The combination of these procedures yields a catalogue that is 72 per cent matched.
Resumo:
We have used the Two-Degree Field (2dF) instrument on the Anglo-Australian Telescope (AAT) to obtain redshifts of a sample of z < 3 and 18.0 < g < 21.85 quasars selected from Sloan Digital Sky Survey (SDSS) imaging. These data are part of a larger joint programme between the SDSS and 2dF communities to obtain spectra of faint quasars and luminous red galaxies, namely the 2dF-SDSS LRG and QSO (2SLAQ) Survey. We describe the quasar selection algorithm and present the resulting number counts and luminosity function of 5645 quasars in 105.7 deg(2). The bright-end number counts and luminosity functions agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to g similar to 20.2. However, at the faint end, the 2SLAQ number counts and luminosity functions are steeper (i.e. require more faint quasars) than the final 2QZ results from Croom et al., but are consistent with the preliminary 2QZ results from Boyle et al. Using the functional form adopted for the 2QZ analysis ( a double power law with pure luminosity evolution characterized by a second-order polynomial in redshift), we find a faint-end slope of beta =-1.78 +/- 0.03 if we allow all of the parameters to vary, and beta =-1.45 +/- 0.03 if we allow only the faint-end slope and normalization to vary (holding all other parameters equal to the final 2QZ values). Over the magnitude range covered by the 2SLAQ survey, our maximum-likelihood fit to the data yields 32 per cent more quasars than the final 2QZ parametrization, but is not inconsistent with other g > 21 deep surveys for quasars. The 2SLAQ data exhibit no well-defined 'break' in the number counts or luminosity function, but do clearly flatten with increasing magnitude. Finally, we find that the shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from Type I quasars found in hard X-ray surveys.
Resumo:
Using imaging from the Hubble Space Telescope, we derive surface brightness profiles for ultracompact dwarfs in the Fornax Cluster and for the nuclei of dwarf elliptical galaxies in the Virgo Cluster. Ultracompact dwarfs are more extended and have higher surface brightnesses than typical dwarf nuclei, while the luminosities, colors, and sizes of the nuclei are closer to those of Galactic globular clusters. This calls into question the production of ultracompact dwarfs via threshing, whereby the lower surface brightness envelope of a dwarf elliptical galaxy is removed by tidal processes, leaving behind a bare nucleus. Threshing may still be a viable model if the relatively bright Fornax ultracompact dwarfs considered here are descended from dwarf elliptical galaxies whose nuclei are at the upper end of their luminosity and size distributions.
Resumo:
We present optical, near-IR, and radio follow-up of 16 Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 52% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.8 mag fainter at t = 12 hr than those of previous missions. The X-ray afterglows are similarly fainter than those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold, and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z similar to 1, whereas the six Swift bursts with measured redshifts are distributed evenly between 0.7 and 3.2. From these results we conclude that ( 1) the pre-Swift distributions were biased in favor of bright events and low-redshift events, ( 2) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions ( which are higher and dimmer, respectively), and (3) similar to 10% of the bursts are optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low-redshift, low-luminosity Swift bursts and the lower event rate than prelaunch estimates ( 90 vs. 150 per year) are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow-up strategies of Swift events. The faintness of the afterglows means that large telescopes should be employed as soon as the burst is localized. Sensitive observations in RIz and near-IR bands will be needed to discriminate between a typical z similar to 2 burst with modest extinction and a high-redshift event. Radio observations will be profitable for a small fraction (similar to 10%) of events. Finally, we suggest that a search for bright host galaxies in untriggered BAT localizations may increase the chance of finding nearby low-luminosity GRBs.
Resumo:
We have redefined group membership of six southern galaxy groups in the local universe (mean cz < 2000 km s(-1)) based on new redshift measurements from our recently acquired Anglo-Australian Telescope 2dF spectra. For each group, we investigate member galaxy kinematics, substructure, luminosity functions and luminosity-weighted dynamics. Our calculations confirm that the group sizes, virial masses and luminosities cover the range expected for galaxy groups, except that the luminosity of NGC 4038 is boosted by the central starburst merger pair. We find that a combination of kinematical, substructural and dynamical techniques can reliably distinguish loose, unvirialized groups from compact, dynamically relaxed groups. Applying these techniques, we find that Dorado, NGC 4038 and NGC 4697 are unvirialized, whereas NGC 681, NGC 1400 and NGC 5084 are dynamically relaxed.
Resumo:
We present 118 new optical redshifts for galaxies in 12 clusters in the Horologium-Reticulum supercluster (HRS) of galaxies. For 76 galaxies, the data were obtained with the Dual Beam Spectrograph on the 2.3 m telescope of the Australian National University at Siding Spring Observatory. After combining 42 previously unpublished redshifts with our new sample, we determine mean redshifts and velocity dispersions for 13 clusters in which previous observational data were sparse. In 6 of the 13 clusters, the newly determined mean redshifts differ by more than 750 km s(-1) from the published values. In three clusters, A3047, A3109, and A3120, the redshift data indicate the presence of multiple components along the line of sight. The new cluster redshifts, when combined with other reliable mean redshifts for clusters in the HRS, are found to be distinctly bimodal. Furthermore, the two redshift components are consistent with the bimodal redshift distribution found for the intercluster galaxies in the HRS by Fleenor and coworkers.