900 resultados para Artificial intelligence -- Data processing
Resumo:
In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.
Resumo:
In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.
Resumo:
Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.
Resumo:
Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.
Resumo:
Das Ziel der Arbeit war die Entwicklung computergestützter Methoden zur Erstellung einer Gefahrenhinweiskarte für die Region Rheinhessen, zur Minimierung der Hangrutschungsgefährdung. Dazu wurde mit Hilfe zweier statistischer Verfahren (Diskriminanzanalyse, Logistische Regression) und einer Methode aus dem Bereich der Künstlichen Intelligenz (Fuzzy Logik) versucht, die potentielle Gefährdung auch solcher Hänge zu klassifizieren, die bis heute noch nicht durch Massenbewegungen aufgefallen sind. Da ingenieurgeologische und geotechnische Hanguntersuchungen aus Zeit und Kostengründen im regionalen Maßstab nicht möglich sind, wurde auf punktuell vorhandene Datenbestände zu einzelnen Rutschungen des Winters 1981/82, die in einer Rutschungsdatenbank zusammengefaßt sind, zurückgegriffen, wobei die daraus gewonnenen Erkenntnisse über Prozeßmechanismen und auslösende Faktoren genutzt und in das jeweilige Modell integriert wurden. Flächenhafte Daten (Lithologie, Hangneigung, Landnutzung, etc.), die für die Berechnung der Hangstabilität notwendig sind, wurden durch Fernerkundungsmethoden, dem Digitalisieren von Karten und der Auswertung von Digitalen Geländemodellen (Reliefanalyse) gewonnen. Für eine weiterführende Untersuchung von einzelnen, als rutschgefährdet klassifizierten Bereichen der Gefahrenhinweiskarte, wurde am Beispiel eines Testgebietes, eine auf dem infinite-slope-stability Modell aufbauende Methode untersucht, die im Maßstabsbereich von Grundkarten (1:5000) auch geotechnische und hydrogeologische Parameter berücksichtigt und damit eine genauere, der jeweiligen klimatischen Situation angepaßte, Gefahrenabschätzung ermöglicht.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Advances in biomedical signal acquisition systems for motion analysis have led to lowcost and ubiquitous wearable sensors which can be used to record movement data in different settings. This implies the potential availability of large amounts of quantitative data. It is then crucial to identify and to extract the information of clinical relevance from the large amount of available data. This quantitative and objective information can be an important aid for clinical decision making. Data mining is the process of discovering such information in databases through data processing, selection of informative data, and identification of relevant patterns. The databases considered in this thesis store motion data from wearable sensors (specifically accelerometers) and clinical information (clinical data, scores, tests). The main goal of this thesis is to develop data mining tools which can provide quantitative information to the clinician in the field of movement disorders. This thesis will focus on motor impairment in Parkinson's disease (PD). Different databases related to Parkinson subjects in different stages of the disease were considered for this thesis. Each database is characterized by the data recorded during a specific motor task performed by different groups of subjects. The data mining techniques that were used in this thesis are feature selection (a technique which was used to find relevant information and to discard useless or redundant data), classification, clustering, and regression. The aims were to identify high risk subjects for PD, characterize the differences between early PD subjects and healthy ones, characterize PD subtypes and automatically assess the severity of symptoms in the home setting.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.
Resumo:
Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.