956 resultados para Arid lands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expansion of agricultural and pasture areas over native forest areas has been broadly documented and represents the main cause of deforestation that has occurred for the last decades. Such reality is not different in indigenous lands, and has been considered as an important obstacle for individuals who directly depend upon the appropriate management of natural resources to maintain their traditions. We investigated the seed rain, seed bank and natural regeneration of native woody species within a degraded pasture land in different distances from an adjacent seasonal semideciduous forest fragment to define methodological procedures based on ecological processes that might subsidize forest restoration in an indigenous land. Most seeds and seedlings picked from the seed rain and seed bank belonged to anemochoric and autochoric dispersing shrubby and herbaceous species originated in the pasture land. The woody species regeneration, on the other hand, reached higher levels, in terms of abundance and richness, as the forest fragment became closer. Zoochoric dispersal was predominant among such species and was mainly detected closer to the forest fragment. Several woody species picked in the forest fragment were also found in the pasture land, thus reinforcing their important role in supplying propagules and easing the successional process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed at characterizing the potential for natural regeneration of native vegetation in the under-story of an earlier Eucalyptus saligna Smith production stand. The study was carried out at the Parque das Neblinas, Bertioga municipality, SP, in a 45 ha third rotation stand; which had been abandoned 15 years ago for natural regeneration to occur. The sampling was done in 24 plots of 20 x 40 m. The sampled area was of 19,200 m(2), with inventory made of 100% of the eucalyptus trees. All regeneration trees with a height >= 1.30 m and DBH >= 5.0 cm were measured, as well as adult individuals with DBH >= 5.0 cm; surveyed in two size classes. 1,417 individuals of E. saligna were measured, with a density of 738,02 individuals/ha and a basal area of 22.69 m(2)/ha. Among 2,763 natural regeneration individuals, 111 species belonged to 66 genera and 34 botanical families. The species represented 43.7% of the tree richness of neighboring native forest fragments. The total estimated density and the basal area were respectively 1,052.6 individuals/ha and 6.4 m(2)/ha of autochthonous trees with DBH >= 5.0 cm (Class 1); while for regeneration there were 3,864.58 individuals/ha, and 2.76 m(2)/ha of individuals with a height >= 1.30 m and DBH <5.0 cm (Class 2). Shannon diversity (H`) was 2.83 and 3.68, respectively, for Classes 1 and 2, and the corrected species richness for a 1000-individual sample (R(1000)) were 75.6 and 87.29 (Fisher`s a index) for the same classes. The majority of the species (34.84%) was typical from the understory of wet tropical forest and had zoochoric fruit dispersal (67.57%). The results indicate that, under these conditions, a eucalyptus forest is able to provide adequate regeneration niches for native vegetation, and may represent a sink habitat for local populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study shows for the first time that terrestrial tank bromeliads from Brazilian restinga can act as natural traps for dispersed palm Euterpe edulis seeds. Such bromeliads, which are shade intolerant, gain benefits by limiting palm recruitment since they hinder canopy formation and, consequently, increase luminosity over its aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex interactions among endangered ecosystems, landowners` interests, and different models of land tenure and use, constitute an important series of challenges for those seeking to maintain and restore biodiversity and augment the flow of ecosystem services. Over the past 10 years, we have developed a data-based approach to address these challenges and to achieve medium and large-scale ecological restoration of riparian areas on private lands in the state of Sao Paulo, southeastern Brazil. Given varying motivations for ecological restoration, the location of riparian areas within landholdings, environmental zoning of different riparian areas, and best-practice restoration methods were developed for each situation. A total of 32 ongoing projects, covering 527,982 ha, were evaluated in large sugarcane farms and small mixed farms, and six different restoration techniques have been developed to help upscale the effort. Small mixed farms had higher portions of land requiring protection as riparian areas (13.3%), and lower forest cover of riparian areas (18.3%), than large sugarcane farms (10.0% and 36.9%, respectively for riparian areas and forest cover values). In both types of farms, forest fragments required some degree of restoration. Historical anthropogenic degradation has compromised forest ecosystem structure and functioning, despite their high-diversity of native tree and shrub species. Notably, land use patterns in riparian areas differed markedly. Large sugarcane farms had higher portions of riparian areas occupied by highly mechanized agriculture, abandoned fields, and anthropogenic wet fields created by siltation in water courses. In contrast, in small mixed crop farms, low or non-mechanized agriculture and pasturelands were predominant. Despite these differences, plantations of native tree species covering the entire area was by far the main restoration method needed both by large sugarcane farms (76.0%) and small mixed farms (92.4%), in view of the low resilience of target sites, reduced forest cover, and high fragmentation, all of which limit the potential for autogenic restoration. We propose that plantations should be carried out with a high-diversity of native species in order to create biologically viable restored forests, and to assist long-term biodiversity persistence at the landscape scale. Finally, we propose strategies to integrate the political, socio-economic and methodological aspects needed to upscale restoration efforts in tropical forest regions throughout Latin America and elsewhere. (C) 2010 Elsevier BA/. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubilities and dissolution rates of three gypsum sources (analytical grade (AG), phosphogypsum (PG) and mined gypsum (MG)) with six MG size fractions ((mm) > 2.0, 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, and < 0.125) were investigated in triple deionised water (TDI) and seawater to examine their suitability for bauxite residue amelioration. Gypsum solubility was greater in seawater (3.8 g L 1) than TDI (2.9 g L 1) due to the ionic strength effect, with dissolution in both TDI and seawater following first order kinetics. Dissolution rate constants varied with gypsum source (AR > PG > MG) due to reactivity and surface area differences, with 1:20 gypsum:solution suspensions reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to adsorb Ca from solution was also examined. The quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption combined with the comparatively rapid dissolution rates preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Instead, direct field application to the residue would ensure more efficient gypsum use. In addition, the formation of a sparingly soluble CaCO3 coating around the gypsum particles after mixing in a highly alkaline seawater/supernatant liquor (SNL) solution greatly reduced the rate of gypsum dissolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the increasing prevalence of salinity world-wide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a pre-wash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this pre-washing increased the exchangeable Ca concentrations while simultaneously decreasing exchangeable Na. In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) for all soils has traditionally been assumed to be similar to that developed by the United States Salinity Laboratory (USSL) in 1954. However, under certain conditions, this relationship has been shown not to be constant, but to vary with both ionic strength and clay mineralogy. We conducted a detailed experiment to determine the effect of ionic strength on the Na+-Ca2+ exchange of four clay minerals (kaolinite, illite, pyrophyllite, and montmorillonite), with results related to the diffuse double-layer (DDL) model. Clays in which external exchange sites dominated (kaolinite and pyrophyllite) tended to show an overall preference for Na+, with the magnitude of this preference increasing with decreasing ESP. For these external surfaces, increases in ionic strength were found to increase preference for Na+. Although illite (2:1 non-expanding mineral) was expected to be dominated by external surfaces, this clay displayed an overall preference for Ca2+, possibly indicating the opening of quasicrystals and the formation of internal exchange surfaces. For the expanding 2:1 clay, montmorillonite, Na+-Ca2+ exchange varied due to the formation of quasicrystals (and internal exchange surfaces) from individual clay platelets. At small ionic strength and large ESP, the clay platelets dispersed and were dominated by external exchange surfaces (displaying preference for Na+). However, as ionic strength increased and ESP decreased, quasicrystals (and internal exchange surfaces) formed, and preference for Ca2+ increased. Therefore, the relationship between SAR and ESP is not constant and should be determined directly for the soil of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to predict leaf area and leaf area index is crucial in crop simulation models that predict crop growth and yield. Previous studies have shown existing methods of predicting leaf area to be inadequate when applied to a broad range of cultivars with different numbers of leaves. The objectives of the study were to (i) develop generalised methods of modelling individual and total plant leaf area, and leaf senescence, that do not require constants that are specific to environments and/or genotypes, (ii) re-examine the base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence, and (iii) assess the method of calculation of individual leaf area from leaf length and leaf width in experimental work. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1994 in south-eastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Additional data for maize plants with low total leaf number (12-17) grown at Katumani Research Centre, Kenya, were included to extend the range in the total leaf number per plant. The equation for the modified (slightly skewed) bell curve could be generalised for modelling individual leaf area, as all coefficients in it were related to total leaf number. Use of coefficients for individual genotypes can be avoided, and individual and total plant leaf area can be calculated from total leaf number. A single, logistic equation, relying on maximum plant leaf area and thermal time from emergence, was developed to predict leaf senescence. The base, optimum, and maximum temperatures for calculation of thermal time for leaf senescence were 8, 34, and 40 degrees C, and apply for the whole crop-cycle when used in modelling of leaf senescence. Thus, the modelling of leaf production and senescence is simplified, improved, and generalised. Consequently, the modelling of leaf area index (LAI) and variables that rely on LAI will be improved. For experimental purposes, we found that the calculation of leaf area from leaf length and leaf width remains appropriate, though the relationship differed slightly from previously published equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To simulate cropping systems, crop models must not only give reliable predictions of yield across a wide range of environmental conditions, they must also quantify water and nutrient use well, so that the status of the soil at maturity is a good representation of the starting conditions for the next cropping sequence. To assess the suitability for this task a range of crop models, currently used in Australia, were tested. The models differed in their design objectives, complexity and structure and were (i) tested on diverse, independent data sets from a wide range of environments and (ii) model components were further evaluated with one detailed data set from a semi-arid environment. All models were coded into the cropping systems shell APSIM, which provides a common soil water and nitrogen balance. Crop development was input, thus differences between simulations were caused entirely by difference in simulating crop growth. Under nitrogen non-limiting conditions between 73 and 85% of the observed kernel yield variation across environments was explained by the models. This ranged from 51 to 77% under varying nitrogen supply. Water and nitrogen effects on leaf area index were predicted poorly by all models resulting in erroneous predictions of dry matter accumulation and water use. When measured light interception was used as input, most models improved in their prediction of dry matter and yield. This test highlighted a range of compensating errors in all modelling approaches. Time course and final amount of water extraction was simulated well by two models, while others left up to 25% of potentially available soil water in the profile. Kernel nitrogen percentage was predicted poorly by all models due to its sensitivity to small dry matter changes. Yield and dry matter could be estimated adequately for a range of environmental conditions using the general concepts of radiation use efficiency and transpiration efficiency. However, leaf area and kernel nitrogen dynamics need to be improved to achieve better estimates of water and nitrogen use if such models are to be use to evaluate cropping systems. (C) 1998 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two geographically distinct silcrete associations are present in southern Australia, inland and eastern; these were sampled in central South Australia and central Victoria, respectively, At each site, both silicified and immediately adjacent unsilicified parent material were collected. Analytical data from these pairs were used to construct isocons, assuming Zr immobility, and to calculate the volume change and amount of silica introduced during silicification, These results, together with whole-rock oxygen isotope compositions, were used to determine the delta(18)O of th, introduced silica, The results show that the eastern silcretes in central Victoria are probably linked genetically to the associated basalts, weathering of which supplied the introduced silica, This conclusion is based on the close spatial connection between the two, as well as the substantial amount of introduced silica in the silcretes (greater than in the inland silcretes), resulting in volume increases in some eastern silcretes, Oxygen isotopic calculations for the silcretes indicate that the silica precipitated from groundwaters at temperatures slightly higher than present conditions. Silcrete formation apparently occurred during the Miocene and Pliocene (basalts in Victoria younger than Pliocene lack associated silcrete) and may reflect the much wetter climate in southeastern Australia at that time. The inland silcretes of central South Australia can be divided into pedogenic (the most common) and groundwater varieties. The pedogenic silcretes, which show typical soil features like columnar and nodular textures, contain moderate amounts of introduced silica that precipitated by evaporation from saline groundwaters, For the groundwater silcretes, which have massive textures and formed at or close to the water table, insufficient data are available to determine the mode of formation. The inland pedogenic silcretes have probably been farming from the Eocene-Miocene to the present, implying that conditions of seasonally high evaporation have occurred in central Australia during this time period. Thus silcrete formation depends on a complex interplay between climate and silica supply, and it is impossible to generalize that the presence of silcrete is indicative of a particular climate. Likewise, the elemental composition of silcretes, particularly Ti content, is not necessarily of climatic significance, Nevertheless, detailed geochemical and oxygen isotopic studies of a silcrete and its parent material can elucidate the mechanisms of silcrete formation, and if evaporation is indicated as a major factor in silcrete formation, then the climate at the time was likely to have been at least seasonally arid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the distribution of butterflies over the mostly arid and semi-arid continent of Australia and analyzed the proportion of migrant species and species diversity with respect to an array of climatic and geographic variables. On a continent-wide scale, latitude explained virtually no variance in either proportion of migrants (r(2) = 0.01) or species diversity (r(2) = 0.03) in Australian butterflies. These results are in marked contrast to those for temperate-zone birds from three continents where latitude explained between 82 and 98% of the variance in frequency of migrants and also accounted for much of the variance in bird species diversity. In eastern Australia where rainfall regimes are similar to those in temperate Europe and North and South America, latitude explains 78% of the variance in frequency of butterfly migrants. In both eastern and central Australia, latitude also accounts for relatively high proportions of the variance in species diversity. Rainfall patterns and especially soil moisture are negatively associated with migration frequency in Australian butterfly faunas, both alone and in combination with other climate variables. Where moisture levels are relatively high, as in eastern Australia, measures of temperature are associated with migration frequency, a result consistent with findings for temperate-zone birds, suggesting latitude is a surrogate for temperature. The ultimate causes of migration in temperate-zone birds and Australian butterflies are the uneven temporal, and in Australia also spatial, distribution of resources. Uneven distribution is brought about primarily by temperature in temperate regions and by erratic rainfall over much of arid Australia. As a key determinant of productivity, especially in the tropics and subtropics, aridity is likely to be an important determinant of the global distributions of migrants.