900 resultados para Antagonistic yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the budding yeast Saccharomyces cerevisiae, the spindle pole body (SPB) serves as the microtubule-organizing center and is the functional analog of the centrosome of higher organisms. By expressing a fusion of a yeast SPB-associated protein to the Aequorea victoria green fluorescent protein, the movement of the SPBs in living yeast cells undergoing mitosis was observed by fluorescence microscopy. The ability to visualize SPBs in vivo has revealed previously unidentified mitotic events. During anaphase, the mitotic spindle has four sequential activities: alignment at the mother-daughter junction, fast elongation, translocation into the bud, and slow elongation. These results indicate that distinct forces act upon the spindle at different times during anaphase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcription of phospholipid biosynthetic genes in the yeast Saccharomyces cerevisiae is maximally derepressed when cells are grown in the absence of inositol and repressed when the cells are grown in its presence. We have previously suggested that this response to inositol may be dictated by regulating transcription of the cognate activator gene, INO2. However, it was also known that cells which harbor a mutant opi1 allele express constitutively derepressed levels of target genes (INO1 and CHO1), implicating the OPI1 negative regulatory gene in the response to inositol. These observations suggested that the response to inositol may involve both regulation of INO2 transcription as well as OPI1-mediated repression. We investigated these possibilities by examining the effect of inositol on target gene expression in a strain containing the INO2 gene under control of the GAL1 promoter. In this strain, transcription of the INO2 gene was regulated in response to galactose but was insensitive to inositol. The expression of the INO1 and CHO1 target genes was still responsive to inositol even though expression of the INO2 gene was unresponsive. However, the level of expression of the INO1 and CHO1 target genes correlated with the level of INO2 transcription. Furthermore, the effect of inositol on target gene expression was eliminated by deleting the OPI1 gene in the GAL1-INO2-containing strain. These data suggest that the OPI1 gene product is the primary target (sensor) of the inositol response and that derepression of INO2 transcription determines the degree of expression of the target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae gene ERD2 is responsible for the retrieval of lumenal resident proteins of the endoplasmic reticulum (ER) lost to the next secretory compartment. Previous studies have suggested that the retrieval of proteins by ERD2 is not essential. Here, we find that ERD2-mediated retrieval is not an essential process only because, on its failure, a second inducible system acts to maintain levels of ER proteins. The second system is controlled by the ER membrane-bound kinase encoded by IRE1. We conclude that IRE1 and ERD2 together maintain normal concentrations of resident proteins within the ER.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a system to transcribe the yeast 5S rRNA gene in the absence of the transcription factor TFIIIA. A long transcript was synthesized both in vitro and in vivo from a hybrid gene in which the tRNA-like promoter sequence of the RPR1 gene was fused to the yeast 5S RNA gene. No internal initiation directed by the endogenous 5S rDNA promoter or any processing of the hybrid transcript was observed in vitro. Yeast cells devoid of transcription factor TFIIIA, which, therefore, could not synthesize any 5S rRNA from the endogenous chromosomal copies of 5S rDNA, could survive if they carried the hybrid RPR1-5S construct on a multicopy plasmid. In this case, the only source of 5S rRNA was the precursor RPR1-5S transcript that gave rise to two RNA species slightly larger than wild-type 5S rRNA. This establishes that the only essential function of TFIIIA is to promote the synthesis of 5S rRNA. However, cells devoid of TFIIIA and surviving with these two RNAs grew more slowly at 30 degrees C compared with wild-type cells and were thermosensitive at 37 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the cauliflower mosaic virus (CaMV) gene VI product can transactivate the expression of a reporter gene in bakers' yeast, Saccharomyces cerevisiae. The gene VI coding sequence was placed under the control of the galactose-inducible promoter GAL1, which is presented in the yeast shuttle vector pYES2, to create plasmid JS169. We also created a chloramphenicol acetyltransferase (CAT) reporter plasmid, JS161, by inserting the CAT reporter gene in-frame into CaMV gene II and subsequently cloning the entire CaMV genome into the yeast vector pRS314. When JS161 was transformed into yeast and subsequently assayed for CAT activity, only a very low level of CAT activity was detected in cellular extracts. To investigate whether the CaMV gene VI product would mediate an increase in CAT activity, we cotransformed yeast with JS169 and JS161. Upon induction with galactose, we found that CAT activity in yeast transformed with JS161 and JS169 was about 19 times higher than the level in the transformants that contained only JS161. CAT activity was dependent on the presence of the gene VI protein, because essentially no CAT activity was detected in yeast cells grown in the presence of glucose, which represses expression from the GAL1 promoter. RNase protection assays showed that the gene VI product had no effect on transcription from the 35S RNA promoter, demonstrating that regulation was occurring at the translation level. This yeast system will prove useful for understanding how the gene VI product of CaMV mediates the translation of genes present on a eukaryotic polycistronic mRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A yeast gene has been identified by screening for DNA replication mutants using a permeabilized cell replication assay. The mutant is temperature sensitive for growth and shows a cell cycle phenotype typical of DNA replication mutants. RNA synthesis is normal in the mutant but DNA synthesis ceases upon shift to the nonpermissive temperature. The DNA2 gene was cloned by complementation of the dna2ts gene phenotype. The gene is essential for viability. The gene encodes a 172-kDa protein with characteristic DNA helicase motifs. A hemagglutinin epitope-Dna2 fusion protein was prepared and purified by conventional and immunoaffinity chromatography. The purified protein is a DNA-dependent ATPase and has 3' to 5' DNA helicase activity specific for forked substrates. A nuclease activity that endonucleolytically cleaves DNA molecules having a single-stranded 5' tail adjacent to a duplex region copurifies through all steps with the fusion protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear import system is highly conserved among eukaryotes. Here we report the effects of a conditional mutation in SRP1, which encodes a Saccharomyces cerevisiae homolog of the vertebrate nuclear import receptor importin. Importin was isolated as a factor required for the initial targeting step of a nuclear import substrate to the nuclear envelope in a mammalian in vitro assay. We show that yeast Srp1 is similarly required for protein import. In addition, Srp1 is also required for the execution of mitosis: we demonstrate that cells containing a conditional mutation of SRP1 arrest with a G2/M phenotype in a manner analogous to classic cdc mutants. This defect may be due to the failure of the mutant to degrade the mitotic cyclin Clb2 and other proteins required for mitosis. The requirement of a nuclear import receptor for cell cycle-regulated proteolysis implies that import of cell cycle regulators into the nucleus is critical for cell cycle progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntaxin family of integral membrane proteins are thought to function as receptors for transport vesicles, with different isoforms of this family localized to various membranes throughout the cell. The yeast Pep12 protein is a syntaxin homologue which may function in the trafficking of vesicles from the trans-Golgi network to the vacuole. We have isolated an Arabidopsis thaliana cDNA by functional complementation of a yeast pep12 mutant. The Arabidopsis cDNA (aPEP12) potentially encodes a 31-kDa protein which is homologous to yeast Pep12 and to other members of the syntaxin family, indicating that this protein may function in the docking or fusion of transport vesicles with the vacuolar membrane in plant cells. Northern blot analysis indicates that the mRNA is expressed in all tissues examined, although at a very low level in leaves. The mRNA is found in all cell types in roots and leaves, as shown by in situ hybridization experiments. The existence of plant homologues of proteins of the syntaxin family indicates that the basic vesicle docking and fusion machinery may be conserved in plants as it is in yeast and mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of export of RNA from the nucleus are poorly understood; however, several viral proteins modulate nucleocytoplasmic transport of mRNA. Among these are the adenoviral proteins E1B-55kDa and E4-34kDa. Late in infection, these proteins inhibit export of host transcripts and promote export of viral mRNA. To investigate the mechanism by which these proteins act, we have expressed them in Saccharomyces cerevisiae. Overexpression of either or both proteins has no obvious effect on cell growth. By contrast, overexpression of E1B-55kDa bearing a nuclear localization signal (NLS) dramatically inhibits cell growth. In this situation, the NLS-E1B-55kDa protein is localized to the nuclear periphery, fibrous material is seen in the nucleoplasm, and poly(A)+ RNA accumulates in the nucleus. Simultaneous overexpression of E4-34kDa bearing or lacking an NLS does not modify these effects. We discuss the mechanisms of selective mRNA transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of DNA double-strand breaks in Saccharomyces cerevisiae requires genes of the RAD52 epistasis group, of which RAD55 and RAD57 are members. Here, we show that the x-ray sensitivity of rad55 and rad57 mutant strains is suppressible by overexpression of RAD51 or RAD52. Virtually complete suppression is provided by the simultaneous overexpression of RAD51 and RAD52. This suppression occurs at 23 degrees C, where these mutants are more sensitive to x-rays, as well as at 30 degrees C and 36 degrees C. In addition, a recombination defect of rad55 and rad57 mutants is similarly suppressed. Direct in vivo interactions between the Rad51 and Rad55 proteins, and between Rad55 and Rad57, have also been identified by using the two-hybrid system. These results indicate that these four proteins constitute part of a complex, a "recombinosome," to effect the recombinational repair of double-strand breaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Camptothecin is a potent antineoplastic agent that interferes with the action of eukaryotic DNA topoisomerase I; the covalent enzyme-DNA intermediate is reversibly stabilized, leading to G2 arrest and cell death. We used a genetic screen to identify cellular factors, other than DNA topoisomerase I, that participate in the process of camptothecin-induced cell death. Following ethyl methanesulfonate mutagenesis of top1 delta yeast cells expressing plasmid-borne wild-type DNA topoisomerase I, six dominant suppressors of camptothecin toxicity were isolated that define a single genetic locus, sct1. Mutant SCT1 cells expressed DNA topoisomerase I protein of similar specific activity and camptothecin sensitivity to that of congenic, drug-sensitive sct1 cells, yet were resistant to camptothecin-mediated lethality. Moreover, camptothecin-treated SCT1 cells did not exhibit the G2-arrested, terminal phenotype characteristic of drug-treated wild-type cells. SCT1 cell sensitivity to other DNA-damaging agents suggests that alterations in SCT1 function suppress camptothecin-induced DNA damage produced in the presence of yeast DNA topoisomerase I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many human malignant cells lack methylthioadenosine phosphorylase (MTAP) enzyme activity. The gene (MTAP) encoding this enzyme was previously mapped to the short arm of chromosome 9, band p21-22, a region that is frequently deleted in multiple tumor types. To clone candidate tumor suppressor genes from the deleted region on 9p21-22, we have constructed a long-range physical map of 2.8 megabases for 9p21 by using overlapping yeast artificial chromosome and cosmid clones. This map includes the type IIFN gene cluster, the recently identified candidate tumor suppressor genes CDKN2 (p16INK4A) and CDKN2B (p15INK4B), and several CpG islands. In addition, we have identified other transcription units within the yeast artificial chromosome contig. Sequence analysis of a 2.5-kb cDNA clone isolated from a CpG island that maps between the IFN genes and CDKN2 reveals a predicted open reading frame of 283 amino acids followed by 1302 nucleotides of 3' untranslated sequence. This gene is evolutionarily conserved and shows significant amino acid homologies to mouse and human purine nucleoside phosphorylases and to a hypothetical 25.8-kDa protein in the pet gene (coding for cytochrome bc1 complex) region of Rhodospirillum rubrum. The location, expression pattern, and nucleotide sequence of this gene suggest that it codes for the MTAP enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yeast possess two homologs of the synaptobrevin family of vesicle-associated membrane proteins that function in membrane recognition and vesicle fusion. Yeast proteins Snc1 and Snc2 localize to secretory vesicles and are required for constitutive exocytosis. They also form a physical complex with a plasma membrane protein, Sec9, which is necessary for vesicle docking and fusion to occur in vivo. Formation of this molecular complex, as a prerequisite for vesicle fusion, appears to have been conserved evolutionarily. Here we demonstrate that Snc proteins undergo a single posttranslational modification with the addition of a palmitate moiety to Cys-95 in Snc1. Modification of Cys-95 (which is located proximal to the transmembrane domain) is rapid, occurs in the endoplasmic reticulum, and is long-lasting. Mutation of Cys-95 to Ser-95 blocks palmitoylation and appears to affect Snc protein stability. This provides evidence that synaptobrevin-like proteins are modified posttranslationally, and we predict that fatty acylation may be common to those found in higher eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast gene KEM1 (also named SEP1/DST2/XRN1/RAR5) produces a G4-DNA-dependent nuclease that binds to G4 tetraplex DNA structure and cuts in a single-stranded region 5' to the G4 structure. G4-DNA generated from yeast telomeric oligonucleotides competitively inhibits the cleavage reaction, suggesting that this enzyme may interact with yeast telomeres in vivo. Homozygous deletions of the KEM1 gene in yeast block meiosis at the pachytene stage, which is consistent with the hypothesis that G4 tetraplex DNA may be involved in homologous chromosome pairing during meiosis. We conjectured that the mitotic defects of kem1/sep1 mutant cells, such as a higher chromosome loss rate, are also due to failure in processing G4-DNA, especially at telomeres. Here we report two phenotypes associated with a kem1-null allele, cellular senescence and telomere shortening, that provide genetic evidence that G4 tetraplex DNA may play a role in telomere functioning. In addition, our results reveal that chromosome ends in the same cells behave differently in a fashion dependent on the KEM1 gene product.