996 resultados para Annaberg (Germany : Landkreis). K. Realgymnasium
Resumo:
The title compound, dirubidium tricadmium tris(sulfate) dihydroxide dihydrate, consists of sheets of CdO6 octahedra and sulfate tetrahedra propagating in the (100) plane, with Rb+ ions in the interlayer positions. It is isostructural with K2Co3(SO4)(3)(OH)(2)(.)2H(2)O.
Resumo:
In the title complex, [Al(C8H13O3)(3)], a potential metal-organic chemical vapour deposition (MOCVD) precursor, three bidentate ligand molecules are bound to the metal atom, forming an octahedral geometry. Two non-planar six-membered chelate rings adopt screw-boat conformations, while the third ring has a conformation that lies about halfway between an envelope and a screw-boat.
Resumo:
The chemical-shift of the X-ray K-absorption edge of Co was studied in a large number of compounds, complexes (spinels) and minerals of Co in its different oxidation states having widely different crystal structures and containing different types of bonding and various types of ligands, and were reported collectively, for the first time, in a single paper. A quadratic relationship was established on the basis of least-squares regression analysis to hold between the chemical-shift and the effective charge on the absorbing atom, but the dominance of the linear term was shown. This relation was utilized in evaluating the charge on the Co-ion in a number of minerals. The effect on chemical-shift of oxidation states of the absorbing atom, of the bond length, crystal structure and higher shell atoms of the molecule, and of electronegativity, atomic number and ionic radius of the ligand was discussed.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.
Resumo:
The k-colouring problem is to colour a given k-colourable graph with k colours. This problem is known to be NP-hard even for fixed k greater than or equal to 3. The best known polynomial time approximation algorithms require n(delta) (for a positive constant delta depending on k) colours to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we look at the average performance of an algorithm rather than its worst-case performance. It is well known that a k-colourable graph drawn from certain classes of distributions can be ii-coloured almost surely in polynomial time. In this paper, we present further results in this direction. We consider k-colourable graphs drawn from the random model in which each allowed edge is chosen independently with probability p(n) after initially partitioning the vertex set into ii colour classes. We present polynomial time algorithms of two different types. The first type of algorithm always runs in polynomial time and succeeds almost surely. Algorithms of this type have been proposed before, but our algorithms have provably exponentially small failure probabilities. The second type of algorithm always succeeds and has polynomial running time on average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work as long as p(n) greater than or equal to n(-1+is an element of) where is an element of is a constant greater than 1/4.
Resumo:
Oxides with different cation ratios 2122, 2212, 2213 and 2223 in the Ti-Ca-Ba-Cu-O system exhibit onset of superconductivity in the 110–125 K range with zero-resistance in the 95–105 K range. Electron microscopic studies show dislocations, layered morphology and other interesting features. These oxides absorb electromagnetic radiation (9.11 GHz) in the superconducting phase.
Resumo:
Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.
Resumo:
In this article we introduce and evaluate testing procedures for specifying the number k of nearest neighbours in the weights matrix of spatial econometric models. The spatial J-test is used for specification search. Two testing procedures are suggested: an increasing neighbours testing procedure and a decreasing neighbours testing procedure. Simulations show that the increasing neighbours testing procedures can be used in large samples to determine k. The decreasing neighbours testing procedure is found to have low power, and is not recommended for use in practice. An empirical example involving house price data is provided to show how to use the testing procedures with real data.
Resumo:
The activity of NiO in NiO-MgO rock salt solid solution has been measured at 1300 K by employing a solid-state galvanic cell: Pt,Ni+ NiO||(CaO)ZrO2||Ni + (Nix,Mgl-x)O, Pt. A high-density tube of Zr02-15 mol% CaO has been used as the solid electrolyte for the emf measurements. The activities of the component oxides in the rock salt solid solution exhibit negative deviation from ideality at the temperature of investigation. The solid solution obeys regular solution behavior at 1300 K. The value of the regular solution parameter is found to be -12000 ((l000) J mol-1. The composition dependence of ΔGEx obtained in this study agrees reasonably well with the calorimetric data reported in the literature for NiO-MgO solid solution.
Resumo:
XANES in the K-edge of copper in the systems CuO, Cu(OH)2, La2CuO4, Cu3AsO4 and CuOHF have been investigated and transitions have been assigned to the observed structures. The measurements have been used for calculating the first coordination bond distance in the above systems. It is observed that the values so determined agree fairly well with crystallographic values.
Resumo:
A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.