979 resultados para Ameloblastoma. Adenomatoid odontogenic tumor. Bone morphogenetic proteins. Immunohistochemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) has been shown to preferentially infect B lymphocytes in vivo. We have used recombinant envelope-coated fluospheres and highly purified MMTV particles to study the distribution of the viral receptors on fresh mouse lymphocytes. A preferential dose-dependent binding to B lymphocytes was observed which could be competed with neutralizing antibodies. In contrast, T-lymphocyte binding remained at background levels. These results strongly suggest a higher density of viral receptor molecules on B lymphocytes than on T lymphocytes and correlate with the preferential initial infection of B lymphocytes observed in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk fat globule-EGF factor 8 (MFG-E8) is a glycoprotein highly expressed in breast cancer that contributes to tumor progression through largely undefined mechanisms. By analyzing publicly available gene expression profiles of breast carcinomas, we found that MFG-E8 is highly expressed in primary and metastatic breast carcinomas, associated with absent estrogen receptor expression. Immunohistochemistry analysis of breast cancer biopsies revealed that MFG-E8 is expressed on the cell membrane as well as in the cytoplasm and nucleus. We also show that increased expression of MFG-E8 in mammary carcinoma cells increases their tumorigenicity in immunodeficient mice, and conversely, its downregulation reduces their in vivo growth. Moreover, expression of MFG-E8 in immortalized mammary epithelial cells promotes their growth and branching in three-dimensional collagen matrices and induces the expression of cyclins D1/D3 and N-cadherin. A mutant protein unable to bind integrins can in part exert these effects, indicating that MFG-E8 function is only partially dependent on integrin activation. We conclude that MFG-E8-dependent signaling stimulates cell proliferation and the acquisition of mesenchymal properties and contributes to mammary carcinoma development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD34/QBEND10 immunostaining has been assessed in 150 bone marrow biopsies (BMB) including 91 myelodysplastic syndromes (MDS), 16 MDS-related AML, 25 reactive BMB, and 18 cases where RA could neither be established nor ruled out. All cases were reviewed and classified according to the clinical and morphological FAB criteria. The percentage of CD34-positive (CD34 +) hematopoietic cells and the number of clusters of CD34+ cells in 10 HPF were determined. In most cases the CD34+ cell count was similar to the blast percentage determined morphologically. In RA, however, not only typical blasts but also less immature hemopoietic cells lying morphologically between blasts and promyelocytes were stained with CD34. The CD34+ cell count and cluster values were significantly higher in RA than in BMB with reactive changes (p<0.0001 for both), in RAEB than in RA (p=0.0006 and p=0.0189, respectively), in RAEBt than in RAEB (p=0.0001 and p=0.0038), and in MDS-AML than in RAEBt (p<0.0001 and p=0.0007). Presence of CD34+ cell clusters in RA correlated with increased risk of progression of the disease. We conclude that CD34 immunostaining in BMB is a useful tool for distinguishing RA from other anemias, assessing blast percentage in MDS cases, classifying them according to FAB, and following their evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer cells acquire cell-autonomous capacities to undergo limitless proliferation and survival through the activation of oncogenes and inactivation of tumor suppressor genes. Nevertheless, the formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment. Carcinoma-associated fibroblasts, leukocytes, bone marrow-derived cells, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Recent evidence indicates that the microenvironment provides essential cues to the maintenance of cancer stem cells/cancer initiating cells and to promote the seeding of cancer cells at metastatic sites. Furthermore, inflammatory cells and immunomodulatory mediators present in the tumor microenvironment polarize host immune response toward specific phenotypes impacting tumor progression. A growing number of studies demonstrate a positive correlation between angiogenesis, carcinoma-associated fibroblasts, and inflammatory infiltrating cells and poor outcome, thereby emphasizing the clinical relevance of the tumor microenvironment to aggressive tumor progression. Thus, the dynamic and reciprocal interactions between tumor cells and cells of the tumor microenvironment orchestrate events critical to tumor evolution toward metastasis, and many cellular and molecular elements of the microenvironment are emerging as attractive targets for therapeutic strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NK cell function is negatively regulated by MHC class I-specific inhibitory receptors. Transduction of the inhibitory signal involves protein tyrosine phosphatases such as SHP-1 (SH2-containing protein tyrosine phosphatase-1). To investigate the role of SHP-1 for NK cell development and function, we generated mice expressing a catalytically inactive, dominant-negative mutant of SHP-1 (dnSHP-1). In this paper we show that expression of dnSHP-1 does not affect the generation of NK cells even though MHC receptor-mediated inhibition is partially impaired. Despite this defect, these NK cells do not kill syngeneic, normal target cells. In fact dnSHP-1-expressing NK cells are hyporesponsive toward MHC-deficient target cells, suggesting that non-MHC-specific NK cell activation is significantly reduced. In contrast, these NK cells mediate Ab-dependent cell-mediated cytotoxicity and prevent the engraftment with beta2-microglobulin-deficient bone marrow cells. A similar NK cell phenotype is observed in viable motheaten (mev) mice, which show reduced SHP-1 activity due to a mutation in the Shp-1 gene. In addition, NK cells in both mouse strains show a tendency to express more inhibitory MHC-specific Ly49 receptors. Our results demonstrate the importance of SHP-1 for the generation of functional NK cells, which are able to react efficiently to the absence of MHC class I molecules from normal target cells. Therefore, SHP-1 may play an as-yet-unrecognized role in some NK cell activation pathways. Alternatively, a reduced capacity to transduce SHP-1-dependent inhibitory signals during NK cell development may be compensated by the down-modulation of NK cell triggering pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytotoxic T cells represent a powerful strategy for antitumor treatment. Depending on the route of injection, an important role for CD4 T cell-mediated help was observed in the induction of this response. For this reason, we investigated whether induction of a CTL response to the HLA-A2-restricted immunodominant peptide melanoma antigen Melan-A was improved by using rVVs expressing the CTL-defined epitope alone or in combination with an SAg. In the latter case, the few infected dendritic cells simultaneously presented an SAg and an antigen, i.e., peptide. Here, we show that the anti-Melan-A response was efficiently induced but not significantly improved by coexpression of the SAg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary : The purpose of this study was to investigate the role of the inflammasome in human and experimental murine models (such as ΑΙΑ and K/BxN) of rheumatoid arthritis (RA)RA, affecting 1% of the population is the most frequent inflammatory disease characterized by synovial hyperplasia and cartilage and bone erosion, leading to joint destruction. In general, women are 3 times more affected by RA suggesting a role of estrogen in this disease. The inflammasome is a multiproteic complex triggering the activation of caspase-1 leading to the activation of IL-1 β, an important pro-inflammatory cytokine implicated in arthritis. The inflammasome has been implicated in several inflammatory diseases and particularly in gout. To highlight a possible role of the inflammasome in murine arthritis, we obtained ASC, caspase-1 and NALP3 +/+ and -/- littermate mice to perform ΑΙΑ and K/BxN arthritis. NALP3 -/- and caspase-1 -/- mice were as arthritic as wild type littermate mice in both ΑΙΑ and K/BxN models implicating that the NALP3 inflammasome is not involved in experimental arthritis. By contrast, ΑΙΑ severity was significantly diminished in ASC- deficient male and female mice, and in the K/BxN model, in ASC-deficient female mice. These results were supported by histological scoring and acute phase protein serum amyloid A (SAA) levels that were equivalent between NALP+/+ and NALP3-/- mice and diminished in ASC -/- mice. In ΑΙΑ and K/BxN murine experimental models, we observed a sexdependent phenotype. We studied the role of estradiol in both the ALA and the K/BxN models. Castrated female or male ASC -/- mice that received estradiol had a decreased arthritis severity. This implies a protective role of estrogen in the absence of ASC. In the ΑΙΑ model, proliferation assay were performed using splenocytes from mBSA- immunized ASC +/+ and -/- mice. The mBSA-induced proliferation was significantly lower in ASC-/- splenocytes. Moreover the CD3-specific proliferation of purified splenic Τ cells was significantly lower in ASC-/- cells. Finally, Τ cells from ASC-/- mice produced significantly decreased levels of IFN-gamma associated with increased levels of IL-10. These results imply a possible role of ASC in the TCR-signaling pathway and Τ cell cytokine production. In parallel the expression of the different inflammasome components were analyzed in biopsies from rheumatoid arthritis (RA) and osteoarthritis (OA) patiens. The expression of the 14 different NALPs, their effector protein ASC, and caspase-1 and -5 was readily measurable by RT-PCR in a similar proportion in RA and OA synovial samples, with the exception of NALP-5 and NALP-13, which weren't found in samples from either disease. The corresponding NALP1, -3, -12 and ASC proteins were expressed at similar levels in both OA and RA biopsies, as determined by immunohistochemistry and Western-blot analysis. By contrast, caspase-1 levels were significantly enhanced in RA synovial tissues compared to those from OA patients. NALP-1, -2, -3, -10, -12 and -14, as well as ASC, caspase-1, and -5 were detected in RNA from unstimulated and stimulated RA synoviocytes. In FLS, only ASC and caspase-1 were expressed at the protein level. NALP1, 3 and 12 were not detected. However, upon stimulation, no secreted IL-Ιβ was detectable in either RA or in OA synoviocytes culture medium. Résumé : Le but de ce projet était d'étudier le rôle de l'inflammasome dans des modèles expérimentaux d'arthrite tels que les modèles ΑΙΑ et K/BxN ainsi que dans la polyarthrite humaine (RA). La polyarthrite est une maladie inflammatoire très fréquente avec 1 % de la population affectée et touche 3 fois plus les femmes que les hommes, suggérant un rôle des hormones sexuelles dans cette pathologie. L'inflammasome est un complexe multiprotéique qui permet l'activation de la caspase-1, une cystéine protéase qui va ensuite cliver et activer rinterleukine-ΐβ (IL-Ιβ). L'inflammasome a été impliqué ces dernières années dans de nombreuses maladies inflammatoires notamment dans la goutte. Pour mettre en évidence un éventuel rôle de l'inflammasome dans l'arthrite expérimentale nous avons obtenu des souris déficientes pour certains des composants de l'inflammasome tels que ASC, NALP3 et caspase-1. Les souris NALP3 déficientes et caspase-1 déficientes sont aussi arthritiques que les souris wild type correspondantes que ce soit dans le modèle ΑΙΑ ou K/BxN. Par contre les souris mâles et femelles ASC-déficientes sont moins arthritiques que les souris +/+ correspondantes dans le modèle ΑΙΑ. Dans le modèle KRN, le même phénotype (diminution de la sévérité de l'arthrite) est observé uniquement chez les femelles ASC-/- Ce phénotype est corrélé avec l'histologie ainsi qu'avec le dosage du serum amyloid A (SAA) qui reflète l'inflammation systémique et qui est diminué chez les souris ASC-déficientes. Nous avons ensuite étudié le rôle de Γ estradiol (une des formes active des estrogènes) dans les modèles K/BxN et ΑΙΑ. Les souris castrées maies ou femelles déficientes pour ASC ayant reçu de l'estradiol ont une arthrite moins sévère ce qui implique que les estradiol ont un effet protecteur en l'absence de ASC. Dans le modèle ΑΙΑ, nous nous sommes aussi intéressés à la réponse immune. Des tests de prolifération ont été effectués sur des splénocytes en présence de mBSA (qui est l'antigène utilisé dans le modèle ΑΙΑ). Les splénocytes ASC -/- ont une proliferation qui est diminuée en présence de l'antigène. De plus la proliferation de cellules Τ spléniques purifiées en présence d'anti-CD3 est diminuée chez les cellules Τ ASC-/-. Ces résultats nous indiquent une éventuelle implication de ASC dans la signalisation par le récépteur des cellules T. En parallèle l'expression des différents composants de l'inflammasome a été analysée dans des biopsies de patients atteints de polyarthrite rhumatoide (RA) et d'arthrose (OA). L'expression des 14 différents NALPs, de l'adaptateur ASC, ainsi que des caspase-1 et -5 était similaires dans les échantillons RA et OA, à l'exception de NALP5 et 13 qui n'étaient pas détéctables. L'expression protéique de NALP1, 3, 12 et ASC effectuée par Western blot et immunohistochimie était similaire dans les biopsies RA et OA. Par contre la quantité de la caspase-1 mesurée par ELISA était augmentée de façon significative dans les extraits protéiques de biopsies RA. NALP-1, -2. -3, -10, -12, and -14 ainsi que ASC, caspase-1 et -5 étaient exprimés de façon similaire par les synoviocytes RA non stimulés et stimulés. Dans les synoviocytes seuls ASC et caspase-1 étaient détéctable au niveau protéique. NALP-1, -3 et -12 n'était pas détéctables. Cependant après stimulation il n'y avait d'IL-Ιβ sécrété que ce soit dans les surnageants de cultures de synoviocytes RA ou OA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally acquired immune responses against human cancers often include CD8(+) T cells specific for the cancer testis antigen NY-ESO-1. Here, we studied T cell receptor (TCR) primary structure and function of 605 HLA-A*0201/NY-ESO-1(157-165)-specific CD8 T cell clones derived from five melanoma patients. We show that an important proportion of tumor-reactive T cells preferentially use TCR AV3S1/BV8S2 chains, with remarkably conserved CDR3 amino acid motifs and lengths in both chains. All remaining T cell clones belong to two additional sets expressing BV1 or BV13 TCRs, associated with alpha-chains with highly diverse VJ usage, CDR3 amino acid sequence, and length. Yet, all T cell clonotypes recognize tumor antigen with similar functional avidity. Two residues, Met-160 and Trp-161, located in the middle region of the NY-ESO-1(157-165) peptide, are critical for recognition by most of the T cell clonotypes. Collectively, our data show that a large number of alphabeta TCRs, belonging to three distinct sets (AVx/BV1, AV3/BV8, AVx/BV13) bind pMHC with equal antigen sensitivity and recognize the same peptide motif. Finally, this in-depth study of recognition of a self-antigen suggests that in part similar biophysical mechanisms shape TCR repertoires toward foreign and self-antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timing effects of radioimmunotherapy (RIT) combined with external-beam radiotherapy (RT) were assessed in human colon carcinoma xenografts. Initially, dose effects of fractionated RT and RIT were evaluated separately. Then, 30 Gy RT (10 fractions over 12 days) were combined with three weekly i.v. injections of 200 microCi of 131I-labeled anti-carcinoembryonic antigen monoclonal antibodies in four different treatment schedules. RIT was given either prior to, concurrently, immediately after, or 2 weeks after RT administration. The longest regrowth delay (RD) of 105 days was observed in mice treated by concurrent administration of RT and RIT, whereas the RDs of RT and RIT alone were 34 and 20 days, respectively. The three sequential combination treatments produced significantly shorter RDs ranging from 62 to 70 days. The tumor response represented by the minimal volume (MV) also showed that concurrent administration of RT and RIT gave the best result, with a mean MV of 4.5% as compared to MVs from 26 to 53% for the three sequential treatments. The results were confirmed in a second experiment, in which a RT of 40 Gy was combined with an identical RIT as above (three injections of 200 microCi of 131I-labeled monoclonal antibodies). At comparable toxicity levels, the maximum tolerated RT or RIT alone gave shorter RDs and less tumor shrinkage compared to simultaneous RT+ RIT. These results may be useful for designing clinical protocols of combined RIT and RT.