977 resultados para Alysidal algebra


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho faz uma abordagem aos Sistemas de Informação Geográfica (SIG) e a análise multicritério (AMC) para o estudo da acessibilidade da rede escolar do município de Humpata, província da Huíla, situada em Angola. Neste trabalho pretende-se demonstrar as dificuldades de acessibilidade e mobilidade tendo em conta aos principais factores que condicionam a rede escolar e também a acessibilidade em termos de oferta e recursos, analisando com algum pormenor as condições de ensino que as escolas oferecem. Por outro lado foram também elaborados modelos de velocidade com o objectivo de verificar a distância-tempo percorrida pelos usuários considerando o declive do terreno. Ficou demonstrado que, para o estudo da acessibilidade da rede escolar, o uso dos SIG e a AMC fornecem resultados com relevância na tomada de decisão. A AMC conjugada com a álgebra de mapas, permitiu registar as disparidades de acessibilidade entre diferentes povoações que compõem o município. Aconselha-se por isso a utilização de ferramentas de análise espacial como os SIG, em contextos como o do município de Humpata onde os recursos escassos devem ser bem geridos, de forma a levar os serviços públicos e privados à maior parte da população e às povoações que mais necessitam através da localização óptima dos futuros serviços, que no caso das instituições escolares concorrera para garantia do sucesso escolar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a heterogeneous relation algebra R, it is well known that the algebra of matrices with coefficient from R is relation algebra with relational sums that is not necessarily finite. When a relational product exists or the point axiom is given, we can represent the relation algebra by concrete binary relations between sets, which means the algebra may be seen as an algebra of Boolean matrices. However, it is not possible to represent every relation algebra. It is well known that the smallest relation algebra that is not representable has only 16 elements. Such an algebra can not be put in a Boolean matrix form.[15] In [15, 16] it was shown that every relation algebra R with relational sums and sub-objects is equivalent to an algebra of matrices over a suitable basis. This basis is given by the integral objects of R, and is, compared to R, much smaller. Aim of my thesis is to develop a system called ReAlM - Relation Algebra Manipulator - that is capable of visualizing computations in arbitrary relation algebras using the matrix approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relation algebras and categories of relations in particular have proven to be extremely useful as a fundamental tool in mathematics and computer science. Since relation algebras are Boolean algebras with some well-behaved operations, every such algebra provides an atom structure, i.e., a relational structure on its set of atoms. In the case of complete and atomic structure (e.g. finite algebras), the original algebra can be recovered from its atom structure by using the complex algebra construction. This gives a representation of relation algebras as the complex algebra of a certain relational structure. This property is of particular interest because storing the atom structure requires less space than the entire algebra. In this thesis I want to introduce and implement three structures representing atom structures of integral heterogeneous relation algebras, i.e., categorical versions of relation algebras. The first structure will simply embed a homogeneous atom structure of a relation algebra into the heterogeneous context. The second structure is obtained by splitting all symmetric idempotent relations. This new algebra is in almost all cases an heterogeneous structure having more objects than the original one. Finally, I will define two different union operations to combine two algebras into a single one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relation algebras is one of the state-of-the-art means used by mathematicians and computer scientists for solving very complex problems. As a result, a computer algebra system for relation algebras called RelView has been developed at Kiel University. RelView works within the standard model of relation algebras. On the other hand, relation algebras do have other models which may have different properties. For example, in the standard model we always have L;L=L (the composition of two (heterogeneous) universal relations yields a universal relation). This is not true in some non-standard models. Therefore, any example in RelView will always satisfy this property even though it is not true in general. On the other hand, it has been shown that every relation algebra with relational sums and subobjects can be seen as matrix algebra similar to the correspondence of binary relations between sets and Boolean matrices. The aim of my research is to develop a new system that works with both standard and non-standard models for arbitrary relations using multiple-valued decision diagrams (MDDs). This system will implement relations as matrix algebras. The proposed structure is a library written in C which can be imported by other languages such as Java or Haskell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

University of Toronto exams. These are in and envelope which is marked “Arts 1st year”. Included in this package are some text book pages [Latin] with the name Ham K. Woodruff written on them. The exams include: Anatomy, Arithmetic and Algebra, Medicine Chemistry, English, Euclid, French, Greek, Latin, Latin Grammar, Latin Prose (2 copies), Materia Medica and Therapeutics and Physiology for 1879. The exams for 1880 include Arithmetic and Algebra, Greek and Trigonometry. The 1881 Greek exam is also included. There is writing on some of the exams and some are worn and stained. The envelope is torn and stained and the textbook pages are slightly burned. This does not affect the text, 1879-1881.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La construction d'un quotient, en topologie, est relativement simple; si $G$ est un groupe topologique agissant sur un espace topologique $X$, on peut considérer l'application naturelle de $X$ dans $X/G$, l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, malheureusement, il n'est généralement pas possible de munir l'espace d'orbites d'une structure de variété. Dans le cas de l'action d'un groupe linéairement réductif $G$ sur une variété projective $X$, la théorie géométrique des invariants nous permet toutefois de construire un morphisme de variété d'un ouvert $U$ de $X$ vers une variété projective $X//U$, se rapprochant autant que possible d'une application quotient, au sens topologique du terme. Considérons par exemple $X\subseteq P^{n}$, une $k$-variété projective sur laquelle agit un groupe linéairement réductif $G$ et supposons que cette action soit induite par une action linéaire de $G$ sur $A^{n+1}$. Soit $\widehat{X}\subseteq A^{n+1}$, le cône affine au dessus de $\X$. Par un théorème de la théorie classique des invariants, il existe alors des invariants homogènes $f_{1},...,f_{r}\in C[\widehat{X}]^{G}$ tels que $$C[\widehat{X}]^{G}= C[f_{1},...,f_{r}].$$ On appellera le nilcone, que l'on notera $N$, la sous-variété de $\X$ définie par le locus des invariants $f_{1},...,f_{r}$. Soit $Proj(C[\widehat{X}]^{G})$, le spectre projectif de l'anneau des invariants. L'application rationnelle $$\pi:X\dashrightarrow Proj(C[f_{1},...,f_{r}])$$ induite par l'inclusion de $C[\widehat{X}]^{G}$ dans $C[\widehat{X}]$ est alors surjective, constante sur les orbites et sépare les orbites autant qu'il est possible de le faire; plus précisément, chaque fibre contient exactement une orbite fermée. Pour obtenir une application régulière satisfaisant les mêmes propriétés, il est nécessaire de jeter les points du nilcone. On obtient alors l'application quotient $$\pi:X\backslash N\rightarrow Proj(C[f_{1},...,f_{r}]).$$ Le critère de Hilbert-Mumford, dû à Hilbert et repris par Mumford près d'un demi-siècle plus tard, permet de décrire $N$ sans connaître les $f_{1},...,f_{r}$. Ce critère est d'autant plus utile que les générateurs de l'anneau des invariants ne sont connus que dans certains cas particuliers. Malgré les applications concrètes de ce théorème en géométrie algébrique classique, les démonstrations que l'on en trouve dans la littérature sont généralement données dans le cadre peu accessible des schémas. L'objectif de ce mémoire sera, entre autres, de donner une démonstration de ce critère en utilisant autant que possible les outils de la géométrie algébrique classique et de l'algèbre commutative. La version que nous démontrerons est un peu plus générale que la version originale de Hilbert \cite{hilbert} et se retrouve, par exemple, dans \cite{kempf}. Notre preuve est valide sur $C$ mais pourrait être généralisée à un corps $k$ de caractéristique nulle, pas nécessairement algébriquement clos. Dans la seconde partie de ce mémoire, nous étudierons la relation entre la construction précédente et celle obtenue en incluant les covariants en plus des invariants. Nous démontrerons dans ce cas un critère analogue au critère de Hilbert-Mumford (Théorème 6.3.2). C'est un théorème de Brion pour lequel nous donnerons une version un peu plus générale. Cette version, de même qu'une preuve simplifiée d'un théorème de Grosshans (Théorème 6.1.7), sont les éléments de ce mémoire que l'on ne retrouve pas dans la littérature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La thèse présente une analyse conceptuelle de l'évolution du concept d'espace topologique. En particulier, elle se concentre sur la transition des espaces topologiques hérités de Hausdorff aux topos de Grothendieck. Il en ressort que, par rapport aux espaces topologiques traditionnels, les topos transforment radicalement la conceptualisation topologique de l'espace. Alors qu'un espace topologique est un ensemble de points muni d'une structure induite par certains sous-ensembles appelés ouverts, un topos est plutôt une catégorie satisfaisant certaines propriétés d'exactitude. L'aspect le plus important de cette transformation tient à un renversement de la relation dialectique unissant un espace à ses points. Un espace topologique est entièrement déterminé par ses points, ceux-ci étant compris comme des unités indivisibles et sans structure. L'identité de l'espace est donc celle que lui insufflent ses points. À l'opposé, les points et les ouverts d'un topos sont déterminés par la structure de celui-ci. Qui plus est, la nature des points change: ils ne sont plus premiers et indivisibles. En effet, les points d'un topos disposent eux-mêmes d'une structure. L'analyse met également en évidence que le concept d'espace topologique évolua selon une dynamique de rupture et de continuité. Entre 1945 et 1957, la topologie algébrique et, dans une certaine mesure, la géométrie algébrique furent l'objet de changements fondamentaux. Les livres Foundations of Algebraic Topology de Eilenberg et Steenrod et Homological Algebra de Cartan et Eilenberg de même que la théorie des faisceaux modifièrent profondément l'étude des espaces topologiques. En contrepartie, ces ruptures ne furent pas assez profondes pour altérer la conceptualisation topologique de l'espace elle-même. Ces ruptures doivent donc être considérées comme des microfractures dans la perspective de l'évolution du concept d'espace topologique. La rupture définitive ne survint qu'au début des années 1960 avec l'avènement des topos dans le cadre de la vaste refonte de la géométrie algébrique entreprise par Grothendieck. La clé fut l'utilisation novatrice que fit Grothendieck de la théorie des catégories. Alors que ses prédécesseurs n'y voyaient qu'un langage utile pour exprimer certaines idées mathématiques, Grothendieck l'emploie comme un outil de clarification conceptuelle. Ce faisant, il se trouve à mettre de l'avant une approche axiomatico-catégorielle des mathématiques. Or, cette rupture était tributaire des innovations associées à Foundations of Algebraic Topology, Homological Algebra et la théorie des faisceaux. La théorie des catégories permit à Grothendieck d'exploiter le plein potentiel des idées introduites par ces ruptures partielles. D'un point de vue épistémologique, la transition des espaces topologiques aux topos doit alors être vue comme s'inscrivant dans un changement de position normative en mathématiques, soit celui des mathématiques modernes vers les mathématiques contemporaines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’un des buts de l’apprentissage des mathématiques est le développement du raisonnement et celui-ci participe à la compréhension des mathématiques. Très liée au raisonnement, la notion de preuve est aussi fondamentale à l’apprentissage des mathématiques, car elle permet d’établir la validité d’arguments mathématiques et de conférer un sens à différents concepts à travers l’explication de l’organisation logique du travail effectué. Toutefois, malgré l’importance accordée au développement de différents types de raisonnements, plusieurs élèves éprouvent des difficultés lorsqu’ils sont appelés à concevoir ou à évaluer des preuves. Dans le cadre de cette recherche, nous avons étudié l’impact de l’utilisation d’un forum électronique sur le développement d’habiletés de validation algébrique ainsi que sur le développement d’habiletés en lien avec l’évaluation de preuves en algèbre chez des élèves de 13 et 14 ans du Nouveau-Brunswick et du Québec. Les résultats laissent supposer que l’utilisation du forum électronique encourage le passage des preuves pragmatiques aux preuves intellectuelles, en plus de favoriser une utilisation adéquate des règles du débat mathématique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le lien entre le spectre de la matrice de transfert de la formulation de spins du modèle de Potts critique et celui de la matrice de transfert double-ligne de la formulation de boucles est établi. La relation entre la trace des deux opérateurs est obtenue dans deux représentations de l'algèbre de Temperley-Lieb cyclique, dont la matrice de transfert de boucles est un élément. Le résultat est exprimé en termes des traces modifiées, qui correspondent à des traces effectuées dans le sous-espace de l'espace de représentation des N-liens se transformant selon la m ième représentation irréductible du groupe cyclique. Le mémoire comporte trois chapitres. Dans le premier chapitre, les résultats essentiels concernant les formulations de spins et de boucles du modèle de Potts sont rappelés. Dans le second chapitre, les propriétés de l'algèbre de Temperley-Lieb cyclique et de ses représentations sont étudiées. Enfin, le lien entre les deux traces est construit dans le troisième chapitre. Le résultat final s'apparente à celui obtenu par Richard et Jacobsen en 2007, mais une nouvelle représentation n'ayant pas été étudiée est aussi investiguée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal