851 resultados para Aluminium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fatigue behaviour of the cold chamber pressure-die-cast alloys: Mazak3, ZA8, ZA27, M3K, ZA8K, ZA27K, K1, K2 and K3 was investigated at temperature of 20°C. The alloys M3K, ZA8K and ZA27K were also examined at temperatures of 50 and 100°C. The ratio between fatigue strength and tensile strength was established at 20°C at 107 cycles. The fatigue life prediction of the alloys M3K, ZA8K and ZA27K was formulated at 20, 50 and 100°C. The prediction formulae were found to be reasonably accurate. All of the experimental alloys were heterogeneous and contained large but varying amounts of pores. These pores were a major contribution and dominated the alloys fatigue failure. Their effect, however, on tensile failure was negligible. The ZA27K possessed the highest tensile strength but the lowest fatigue strength. The relationship between the fracture topography and the microstructure was also determined by the use of a mixed signal of a secondary electron and a back-scattered electron on the SEM. The tensile strength of the experimental alloys was directly proportional to the aluminium content within the alloys. The effect of copper content was also investigated within the alloys K1, K2, ZA8K and K3 which contained 0%, 0.5%, 1.0% and 2.0% respectively. It was determined that the fatigue and tensile strengths improved with higher copper contents. Upon ageing the alloys Mazak3, ZA8 and ZA27 at an ambient temperature for 5 years, copper was also found to influence and maintain the metastable Zn-Al (αm) phase. The copper free Mazak3 upon ageing lost this metastable phase. The 1.0% copper ZA8 alloy had lost almost 50% of its metastable phase. Finally the 2.0% copper ZA27 had merely lost 10% of its metastable phase. The cph zinc contained a limited number of slip systems, therefore twinning deformation was unavoidable in both fatigue and tensile testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive bonding of aluminium is widely used in the aerospace industry. High initial bood strengths can be obtained, but bond failure occurs atter prolonged exposure to humid enviroments. The thesis contains details ot a test procedure which has been designed and developed for the assessment of different alloys, pretreatments, and adhesives, which will give adhesively bonded aluminium joints of high strength coupled with long term durability. The test involves assembly of lap shear specimens in a precision jig using 250 ballotini spacers in the adhesive to control the bond line thickness. The test is modified by drilling three accurately located holes through the bonded area after assembly of the joint and curing of the adhesive. Further important features at the test, such as fillet control, are detailed. The test was assessed, modified and developed to give a reliable and reproducible method which would discriminate amongst different bonding systems after exposure to humid test environments. This is the first test to have achieved the discrimination necessary for short term assessment of bond systems where long term durability is required. Even better discrimination has been obtained by applying stress in a stress humidity test. Having established accurate, reliable and discriminating test methods they were used to study the durability of structural epoxy adhesive bonds to aluminium as a function of alloy, pretreatment, adhesive and environment. It was established that the long term durability or adhesively bonded aluminium was directly related to the infulence of water migrating within the adhesive. Pretreatments differed in their ability to prevent hydration of the aluminium oxide by the water absorbed within the adhesive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new family of commercial zinc alloys designated as ZA8, ZA12, and ZA27 and high damping capacity alloys including Cosmal and Supercosmal and aluminium alloy LM25 were investigated for compressive creep and load relaxation behaviour under a series of temperatures and stresses. A compressive creep machine was designed to test the sand cast hollow cylindrical test specimens of these alloys. For each compressive creep experiment the variation of creep strain was presented in the form of graphs plotted as percentage of creep strain () versus time in seconds (s). In all cases, the curves showed the same general form of the creep curve, i.e. a primary creep stage, followed by a linear steady-state region (secondary creep). In general, it was observed that alloy ZA8 had the least primary creep among the commercial zinc-based alloys and ZA27 the greatest. The extent of primary creep increased with aluminium content to that of ZA27 then declined to Supercosmal. The overall creep strength of ZA27 was generally less than ZA8 and ZA12 but it showed better creep strength than ZA8 and ZA12 at high temperature and high stress. In high damping capacity alloys, Supercosmal had less primary creep and longer secondary creep regions and also had the lowest minimum creep rate among all the tested alloys. LM25 exhibited almost no creep at maximum temperature and stress used in this research work. Total creep elongation was shown to be well correlated using an empirical equation. Stress exponent and activation energies were calculated and found to be consistent with the creep mechanism of dislocation climb. The primary α and β phases in the as-cast structures decomposed to lamellar phases on cooling, with some particulates at dendrite edges and grain boundaries. Further breakdown into particulate bodies occurred during creep testing, and zinc bands developed at the highest test temperature of 160°C. The results of load relaxation testing showed that initially load loss proceeded rapidly and then deminished gradually with time. Load loss increased with temperature and almost all the curves approximated to a logarithmic decay of preload with time. ZA alloys exhibited almost the same load loss at lower temperature, but at 120°C ZA27 improved its relative performance with the passage of time. High damping capacity alloys and LM25 had much better resistance to load loss than ZA alloys and LM25 was found to be the best against load loss among these alloys. A preliminary equation was derived to correlate the retained load with time and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressive creep behaviour of six sand cast zinc-rich alloys: No3 and No5, corresponding to BS 1004A and BS 1004B, respectively, alloy No2, ILZRO,.16 and two newer alloys ACuZinc5 and ACuZinc10 was investigated. The total creep contraction of the alloys was found to be well correlated using an empirical equation. On the basis of this equation, a parametrical relationship was derived which allowed the total creep contraction to be related to the applied stress, the temperature and the time of test, so that a quantitative assessment of compressive creep of the alloys could be made under different testing conditions. The primary creep and secondary creep rates were found for the alloys at different temperatures and stresses. Generally, the primary creep contraction was found to increase with copper content, whereas secondary creep rates decreased in the order No3, ACuZinc10, ACuZinc5 and No2. ILZRO.16 was tested only at the highest stress and two higher temperatures. The results showed that ILZRO.16 had higher creep resistance than all the other alloys. Thus, based on the above empirical equation, alloy No2 was found to have a substantially better total creep resistance than alloys No3 and No5, and slightly better than ACuZinc5 and ACuZinc10 for strains up to 1%. Both ACuZinc alloys had higher creep strength than commercial alloys No3 and No5. Alloy No5 had much higher creep resistance than alloy No3 under all conditions. The superior creep resistance of alloy No2 was considered to be due to the presence of small precipitates of -phase in the zinc matrix and a regular eutectic morphology. The stress exponents and activation energies for creep under different testing conditions were found to be consistent with some established creep-controlling mechanisms; i.e. dislocation climb for alloy No3, dislocation climb over second phase particles for alloys No5, No2, ACuZinc10, controlled by lattice diffusion in the zinc-rich phase. The lower creep resistance of alloy No3 was mainly due to the lower creep strength of copper-free primary particles having greater volume than eutectic in the microstructure. Alloys No5, ACuZinc5 and ACuZinc10 showed much better creep resistance than alloy No3, based on the precipitation-hardening due to the presence of small -phase precipitates. The primary dendrites in both ACuZinc alloys however were not of much benefit in improving the creep resistance of the alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines theoretically and experimentally the behaviour of a temporary end plate connection for an aluminium space frame structure, subjected to static loading conditions. Theoretical weld failure criterions are derived from basic fundamentals for both tensile and shear fillet welds. Direct account of weld penetration is taken by incorporating it into a more exact poposed weld model. Theoretical relationships between weld penetration and weld failure loads, failure planes and failure lengths are derived. Also, the variation in strength between tensile and shear fillet welds is shown to be dependent upon the extent of weld penetration achieved/ The proposed tensile weld failure theory is extended to predict the theoretical failure of the welds in the end plate space frame connection. A finite element analysis is conducted to verify the assumptions made for this theory. Experimental hardness and tensile tests are conducted to substantiate the extent and severity of the heat affected zone in aluminium alloy 6082-T6. Simple transverse and longitudinal fillet welded specimens of the same alloy, are tested to failure. These results together with those of other authors are compared to the theoretical predictions made by the proposed weld failure theories and by those made using Kamtekar's and Kato and Morita's failure equations, the -formula and BS 8118. Experimental tests are also conducted on the temporary space frame connection. The maximum stresses and displacements recorded are checked against results obtained from a finite element analysis of the connection. Failure predictions made by the proposed extended weld failure theory, are compared against the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue crack initiation and propagation in aluminium butt welds has been investigated. It is shown that the initiation of cracks from both buried defects and. from the weld reinforcement may be quantified by predictive laws based on either linear elastic fracture mechanics, or on Neuber's rule of stress and strain ooncentrations. The former is preferable on the grounds of theoretical models of crack tip plasticity, although either may be used as the basis of an effeotive design criteria against crack initiation. Fatigue lives fol1owing initiation were found to follow predictions based on the integration of a Paris type power law. The effect of residual stresses from the welding operation on both initiation and propagation was accounted for by a Forman type equation. This incorporated the notional stress ratio produced by the residual stresses after various heat treatments. A fracture mechanics analysis was found to be useful in describing the fatigue behaviour of the weldments at increased temperatures up to 300°C. It is pointed out, however, that the complex interaction of residual stresses, frequency, and changes in fracture mode necessitate great caution in the application of any general design criteria against crack initiation and growth at elevated. temperatures.

Relevância:

20.00% 20.00%

Publicador: