891 resultados para Algorithms genetics
Resumo:
In vitro production has been employed in bovine embryos and quantification of lipids is fundamental to understand the metabolism of these embryos. This paper presents a unsupervised segmentation method for histological images of bovine embryos. In this method, the anisotropic filter was used in the differents RGB components. After pre-processing step, the thresholding technique based on maximum entropy was applied to separate lipid droplets in the histological slides in different stages: early cleavage, morula and blastocyst. In the postprocessing step, false positives are removed using the connected components technique that identify regions with excess of dye near pellucid zone. The proposed segmentation method was applied in 30 histological images of bovine embryos. Experiments were performed with the images and statistical measures of sensitivity, specificity and accuracy were calculated based on reference images (gold standard). The value of accuracy of the proposed method was 96% with standard deviation of 3%.
Resumo:
Sao Paulo State Research Foundation-FAPESP
Resumo:
BACKGROUND CONTEXT: The relationships between obesity and low back pain (LBP) and lumbar disc degeneration (LDD) remain unclear. It is possible that familial factors, including genetics and early environment, affect these relationships.PURPOSE: To investigate the relationship between obesity-related measures (eg, weight, body mass index [BMI]) and LBP and LDD using twin studies, where the effect of genetics and early environment can be controlled.STUDY DESIGN: A systematic review with meta-analysis.METHODS: MEDLINE, CINAHL, Scopus, Web of Science, and EMBASE databases were searched from the earliest records to August 2014. All cross-sectional and longitudinal observational twin studies identified by the search strategy were considered for inclusion. Two investigators independently assessed the eligibility, conducted the quality assessment, and extracted the data. Metaanalyses (fixed or random effects, as appropriate) were used to pool studies'estimates of association.RESULTS: In total, 11 articles met the inclusion criteria. Five studies were included in the LBP analysis and seven in the LDD analysis. For the LBP analysis, pooling of the five studies showed that the risk of having LBP for individuals with the highest levels of BMI or weight was almost twice that of people with a lower BMI (odds ratio [OR] 1.8; 95% confidence interval [CI] 1.6-2.0; I-2 = 0%). A dose-response relationship was also identified. When genetics and the effects of a shared early environment were adjusted for using a within-pair twin case-control analysis, pooling of three studies showed a reduced but statistically positive association between obesity and prevalence of LBP (OR 1.5; 95% CI 1.1-2.1; I-2 = 0%). However, the association was further diminished and not significant (OR 1.4; 95% CI 0.8-2.3; I-2 = 0%) when pooling included two studies on monozygotic twin pairs only. Seven studies met the inclusion criteria for LDD. When familial factors were not controlled for, body weight was positively associated with LDD in all five cross-sectional studies. Only two cross-sectional studies investigated the relationship between obesity-related measures and LDD accounting for familial factors, and the results were conflicting. One longitudinal study in LBP and three longitudinal studies in LDD found no increase in risk in obese individuals, whether or not familial factors were controlled for.CONCLUSIONS: Findings from this review suggest that genetics and early environment are possible mechanisms underlying the relationship between obesity and LBP; however, a direct causal link between these conditions appears to be weak. Further longitudinal studies using the twin design are needed to better understand the complex mechanisms underlying the associations between obesity, LBP, and LDD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we deal with the problem of boosting the Optimum-Path Forest (OPF) clustering approach using evolutionary-based optimization techniques. As the OPF classifier performs an exhaustive search to find out the size of sample's neighborhood that allows it to reach the minimum graph cut as a quality measure, we compared several optimization techniques that can obtain close graph cut values to the ones obtained by brute force. Experiments in two public datasets in the context of unsupervised network intrusion detection have showed the evolutionary optimization techniques can find suitable values for the neighborhood faster than the exhaustive search. Additionally, we have showed that it is not necessary to employ many agents for such task, since the neighborhood size is defined by discrete values, with constrain the set of possible solution to a few ones.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.
Resumo:
The United States National Ice Center (NIC) provides weekly ice analyses of the Arctic and Antarctic using information from ice reconnaissance, ship reports and high-resolution satellite imagery. In cloud-covered areas and regions lacking imagery, the higher-resolution sources are augmented by ice concentrations derived from Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSMII) passive-microwave imagery. However, the SSMII-derived ice concentrations are limited by low resolution and uncertainties in thin-ice regions. Ongoing research at NIC is attempting to improve the utility of these SSMII products for operational sea-ice analyses. The refinements of operational algorithms may also aid future scientific studies. Here we discuss an evaluation of the standard operational ice-concentration algorithm, Cal/Val, with a possible alternative, a modified NASA Team algorithm. The modified algorithm compares favorably with CallVal and is a substantial improvement over the standard NASA Team algorithm in thin-ice regions that are of particular interest to operational activities.
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
In this paper, we investigate the problem of routing connections in all-optical networks while allowing for degradation of routed signals by different optical components. To overcome the complexity of the problem, we divide it into two parts. First, we solve the pure RWA problem using fixed routes for every connection. Second, power assignment is accomplished by either using the smallest-gain first (SGF) heuristic or using a genetic algorithm. Numerical examples on a wide variety of networks show that (a) the number of connections established without considering the signal attenuation was most of the time greater than that achievable considering attenuation and (b) the genetic solution quality was much better than that of SGF, especially when the conflict graph of the connections generated by the linear solver is denser.
Resumo:
Multicommodity flow (MF) problems have a wide variety of applications in areas such as VLSI circuit design, network design, etc., and are therefore very well studied. The fractional MF problems are polynomial time solvable while integer versions are NP-complete. However, exact algorithms to solve the fractional MF problems have high computational complexity. Therefore approximation algorithms to solve the fractional MF problems have been explored in the literature to reduce their computational complexity. Using these approximation algorithms and the randomized rounding technique, polynomial time approximation algorithms have been explored in the literature. In the design of high-speed networks, such as optical wavelength division multiplexing (WDM) networks, providing survivability carries great significance. Survivability is the ability of the network to recover from failures. It further increases the complexity of network design and presents network designers with more formidable challenges. In this work we formulate the survivable versions of the MF problems. We build approximation algorithms for the survivable multicommodity flow (SMF) problems based on the framework of the approximation algorithms for the MF problems presented in [1] and [2]. We discuss applications of the SMF problems to solve survivable routing in capacitated networks.
Resumo:
The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.
Resumo:
We explore the problem of budgeted machine learning, in which the learning algorithm has free access to the training examples’ labels but has to pay for each attribute that is specified. This learning model is appropriate in many areas, including medical applications. We present new algorithms for choosing which attributes to purchase of which examples in the budgeted learning model based on algorithms for the multi-armed bandit problem. All of our approaches outperformed the current state of the art. Furthermore, we present a new means for selecting an example to purchase after the attribute is selected, instead of selecting an example uniformly at random, which is typically done. Our new example selection method improved performance of all the algorithms we tested, both ours and those in the literature.
Resumo:
Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.
Resumo:
The western spread of raccoon rabies in Alabama has been slow and even appears to regress eastward periodically. While the disease has been present in the state for over 30 years, areas in northwest Alabama are devoid of raccoon rabies. This variation resulting in an enzootic area of raccoon rabies primarily in southeastern Alabama may be due to landscape features that hinder the movement of raccoons (i.e., gene flow) among different locations. We used 11 raccoon-specific microsatellite markers to obtain individual genotypes to examine gene flow among areas that were rabies free, enzootic with rabies, or had only sporadic reports of the disease. Samples from 70 individuals were collected from 5 sampling localities in 3 counties. The landscape feature data were collected from geographic information system (GIS) data. We inferred gene flow by estimating FST and by using Bayesian tests to identify genetic clusters. Estimates of pairwise FST indicated genetic differentiation and restricted gene flow between some sites, and an uneven distribution of genetic clusters was observed. Of the landscape features examined (i.e., land cover, elevation, slope, roads, and hydrology), only land cover had an association with genetic differentiation, suggesting this landscape variable may affect gene flow among raccoon populations and thus the spread of raccoon variant of rabies in Alabama.
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.