918 resultados para Algebraic attack
Resumo:
The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer's disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host's immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more "susceptible" to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.
Resumo:
Migraine is a common neurological disorder classified by the World Health Organisation (WHO) as one of the top twenty most debilitating diseases in the developed world. Current therapies are only effective for a proportion of sufferers and new therapeutic targets are desperately needed to alleviate this burden. Recently the role of epigenetics in the development of many complex diseases including migraine has become an emerging topic. By understanding the importance of acetylation, methylation and other epigenetic modifications, it then follows that this modification process is a potential target to manipulate epigenetic status with the goal of treating disease. Bisulphite sequencing and methylated DNA immunoprecipitation have been used to demonstrate the presence of methylated cytosines in the human D-loop of mitochondrial DNA (mtDNA), proving that the mitochondrial genome is methylated. For the first time, it has been shown that there is a difference in mtDNA epigenetic status between healthy controls and those with disease, especially for neurodegenerative and age related conditions. Given co-morbidities with migraine and the suggestive link between mitochondrial dysfunction and the lowered threshold for triggering a migraine attack, mitochondrial methylation may be a new avenue to pursue. Creative thinking and new approaches are needed to solve complex problems and a systems biology approach, where multiple layers of information are integrated is becoming more important in complex disease modelling.
Resumo:
For Construction - Architectural drawing package. House designed to AS3959:2009 Bushfire Attack Level 40. QUT-Client Agreement 100% Research (HERDC definition of Research).
Resumo:
Construction drawings for Built work of Architecture. Completed July 2013. House designed to AS3959:2009 Bushfire Attack Level 40. 100% Commercial Research Project (HERDC Definition of Research)
Resumo:
The Secure Shell (SSH) protocol is widely used to provide secure remote access to servers, making it among the most important security protocols on the Internet. We show that the signed-Diffie--Hellman SSH ciphersuites of the SSH protocol are secure: each is a secure authenticated and confidential channel establishment (ACCE) protocol, the same security definition now used to describe the security of Transport Layer Security (TLS) ciphersuites. While the ACCE definition suffices to describe the security of individual ciphersuites, it does not cover the case where parties use the same long-term key with many different ciphersuites: it is common in practice for the server to use the same signing key with both finite field and elliptic curve Diffie--Hellman, for example. While TLS is vulnerable to attack in this case, we show that SSH is secure even when the same signing key is used across multiple ciphersuites. We introduce a new generic multi-ciphersuite composition framework to achieve this result in a black-box way.
Resumo:
Did SBS chief executive Michael Ebeid score a well-timed free kick or an own goal in his attack on the ABC this week? The ABC recently secured the free-to-air television rights for the Asian Cup football tournament to be held in Australia early next year, together with tonight’s match between the Socceroos and Japan. A lower bid by SBS – still in some circles fondly known as the “Soccer Broadcasting Service” – was rejected, dealing a significant blow to the smaller public broadcaster. The ABC was reportedly asked to make a bid by Football Federation Australia. The FFA presumably believes the ABC’s coverage will attract larger audiences to the game. This is despite SBS’s long-term success with the sport. It should not be forgotten, however, that while SBS has largely been defined by its long connection with the world game, ABC was the home of football from the late 1950s until the 1980s. But the stoush is only partly about football. It was surely no coincidence that it comes on the eve of the government’s formal announcement of the size of the cuts to public broadcasting...
Resumo:
The authors have collaborated in the development and initial evaluation of a curriculum for mathematics acceleration. This paper reports upon the difficulties encountered with documenting student understanding using pen-and-paper assessment tasks. This leads to a discussion of the impact of students’ language and literacy on mathematical performance and the consequences for motivation and engagement as a result of simplifying the language in the tests, and extending student work to algebraic representations. In turn, implications are drawn for revisions to assessment used within the project and the language and literacy focus included within student learning experiences.
Resumo:
This article considers the risk of disclosure in linked databases when statistical analysis of micro-data is permitted. The risk of disclosure needs to be balanced against the utility of the linked data. The current work specifically considers the disclosure risks in permitting regression analysis to be performed on linked data. A new attack based on partitioning of the database is presented.
Resumo:
Compression is desirable for network applications as it saves bandwidth; however, when data is compressed before being encrypted, the amount of compression leaks information about the amount of redundancy in the plaintext. This side channel has led to successful CRIME and BREACH attacks on web traffic protected by the Transport Layer Security (TLS) protocol. The general guidance in light of these attacks has been to disable compression, preserving confidentiality but sacrificing bandwidth. In this paper, we examine two techniques - heuristic separation of secrets and fixed-dictionary compression|for enabling compression while protecting high-value secrets, such as cookies, from attack. We model the security offered by these techniques and report on the amount of compressibility that they can achieve.
Resumo:
Efficient error-Propagating Block Chaining (EPBC) is a block cipher mode intended to simultaneously provide both confidentiality and integrity protection for messages. Mitchell’s analysis pointed out a weakness in the EPBC integrity mechanism that can be used in a forgery attack. This paper identifies and corrects a flaw in Mitchell’s analysis of EPBC, and presents other attacks on the EPBC integrity mechanism.
Resumo:
SIMON is a family of 10 lightweight block ciphers published by Beaulieu et al. from the United States National Security Agency (NSA). A cipher in this family with K -bit key and N -bit block is called SIMON N/K . We present several linear characteristics for reduced-round SIMON32/64 that can be used for a key-recovery attack and extend them further to attack other variants of SIMON. Moreover, we provide results of key recovery analysis using several impossible differential characteristics starting from 14 out of 32 rounds for SIMON32/64 to 22 out of 72 rounds for SIMON128/256. In some cases the presented observations do not directly yield an attack, but provide a basis for further analysis for the specific SIMON variant. Finally, we exploit a connection between linear and differential characteristics for SIMON to construct linear characteristics for different variants of reduced-round SIMON. Our attacks extend to all variants of SIMON covering more rounds compared to any known results using linear cryptanalysis. We present a key recovery attack against SIMON128/256 which covers 35 out of 72 rounds with data complexity 2123 . We have implemented our attacks for small scale variants of SIMON and our experiments confirm the theoretical bias presented in this work.
Resumo:
Recently Gao et al. proposed a lightweight RFID mutual authentication protocol [3] to resist against intermittent position trace attacks and desynchronization attacks and called it RIPTA-DA. They also verified their protocol’s security by data reduction method with the learning parity with noise (LPN) and also formally verified the functionality of the proposed scheme by Colored Petri Nets. In this paper, we investigate RIPTA-DA’s security. We present an efficient secret disclosure attack against the protocol which can be used to mount both de-synchronization and traceability attacks against the protocol. Thus our attacks show that RIPTA-DA protocol is not a RIPTA-DA.
Resumo:
At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).
Resumo:
We present some improved analytical results as part of the ongoing work on the analysis of Fugue-256 hash function, a second round candidate in the NIST’s SHA3 competition. First we improve Aumasson and Phans’ integral distinguisher on the 5.5 rounds of the final transformation of Fugue-256 to 16.5 rounds. Next we improve the designers’ meet-in-the-middle preimage attack on Fugue-256 from 2480 time and memory to 2416. Finally, we comment on possible methods to obtain free-start distinguishers and free-start collisions for Fugue-256.
Resumo:
We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimage attack of Kelsey and Schneier, the herding attack of Kelsey and Kohno and the multicollision attack of Joux. Our attacks also apply to a large class of cascaded hash functions. Our second preimage attacks on the cascaded hash functions improve the results of Joux presented at Crypto’04. We also apply our attacks to the MD2 and GOST hash functions. Our second preimage attacks on the MD2 and GOST hash functions improve the previous best known short-cut second preimage attacks on these hash functions by factors of at least 226 and 254, respectively. Our herding and multicollision attacks on the hash functions based on generic checksum functions (e.g., one-way) are a special case of the attacks on the cascaded iterated hash functions previously analysed by Dunkelman and Preneel and are not better than their attacks. On hash functions with easily invertible checksums, our multicollision and herding attacks (if the hash value is short as in MD2) are more efficient than those of Dunkelman and Preneel.