966 resultados para Algebra of Errors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To explore oncology nurses' perceptions and experiences with patient involvement in chemotherapy error prevention.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoindentation is a valuable tool for characterization of biomaterials due to its ability to measure local properties in heterogeneous, small or irregularly shaped samples. However, applying nanoindentation to compliant, hydrated biomaterials leads to many challenges including adhesion between the nanoindenter tip and the sample. Although adhesion leads to overestimation of the modulus of compliant samples when analyzing nanoindentation data using traditional analysis techniques, most studies of biomaterials have ignored its effects. This paper demonstrates two methods for managing adhesion in nanoindentation analysis, the nano-JKR force curve method and the surfactant method, through application to two biomedically-relevant compliant materials, poly(dimethyl siloxane) (PDMS) elastomers and poly(ethylene glycol) (PEG) hydrogels. The nano-JKR force curve method accounts for adhesion during data analysis using equations based on the Johnson-Kendall-Roberts (JKR) adhesion model, while the surfactant method eliminates adhesion during data collection, allowing data analysis using traditional techniques. In this study, indents performed in air or water resulted in adhesion between the tip and the sample, while testing the same materials submerged in Optifree Express() contact lens solution eliminated tip-sample adhesion in most samples. Modulus values from the two methods were within 7% of each other, despite different hydration conditions and evidence of adhesion. Using surfactant also did not significantly alter the properties of the tested material, allowed accurate modulus measurements using commercial software, and facilitated nanoindentation testing in fluids. This technique shows promise for more accurate and faster determination of modulus values from nanoindentation of compliant, hydrated biological samples. Copyright 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To analyse the frequency of and identify risk factors for patient-reported medical errors in Switzerland. The joint effect of risk factors on error-reporting probability was modelled for hypothetical patients. METHODS: A representative population sample of Swiss citizens (n = 1306) was surveyed as part of the Commonwealth Fund’s 2010 lnternational Survey of the General Public’s Views of their Health Care System’s Performance in Eleven Countries. Data on personal background, utilisation of health care, coordination of care problems and reported errors were assessed. Logistic regression analysis was conducted to identify risk factors for patients’ reports of medical mistakes and medication errors. RESULTS: 11.4% of participants reported at least one error in their care in the previous two years (8% medical errors, 5.3% medication errors). Poor coordination of care experiences was frequent. 7.8% experienced that test results or medical records were not available, 17.2% received conflicting information from care providers and 11.5% reported that tests were ordered although they had been done before. Age (OR = 0.98, p = 0.014), poor health (OR = 2.95, p = 0.007), utilisation of emergency care (OR = 2.45, p = 0.003), inpatient-stay (OR = 2.31, p = 0.010) and poor care coordination (OR = 5.43, p <0.001) are important predictors for reporting error. For high utilisers of care that unify multiple risk factors the probability that errors are reported rises up to p = 0.8. CONCLUSIONS: Patient safety remains a major challenge for the Swiss health care system. Despite the health related and economic burden associated with it, the widespread experience of medical error in some subpopulations also has the potential to erode trust in the health care system as a whole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-site time series studies of air pollution and mortality and morbidity have figured prominently in the literature as comprehensive approaches for estimating acute effects of air pollution on health. Hierarchical models are generally used to combine site-specific information and estimate pooled air pollution effects taking into account both within-site statistical uncertainty, and across-site heterogeneity. Within a site, characteristics of time series data of air pollution and health (small pollution effects, missing data, highly correlated predictors, non linear confounding etc.) make modelling all sources of uncertainty challenging. One potential consequence is underestimation of the statistical variance of the site-specific effects to be combined. In this paper we investigate the impact of variance underestimation on the pooled relative rate estimate. We focus on two-stage normal-normal hierarchical models and on under- estimation of the statistical variance at the first stage. By mathematical considerations and simulation studies, we found that variance underestimation does not affect the pooled estimate substantially. However, some sensitivity of the pooled estimate to variance underestimation is observed when the number of sites is small and underestimation is severe. These simulation results are applicable to any two-stage normal-normal hierarchical model for combining information of site-specific results, and they can be easily extended to more general hierarchical formulations. We also examined the impact of variance underestimation on the national average relative rate estimate from the National Morbidity Mortality Air Pollution Study and we found that variance underestimation as much as 40% has little effect on the national average.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effects of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.