955 resultados para Adrenergic alpha-2 Receptor Antagonists


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic day (E) 12.5, E15.5 and postnatal day (P) 75 ureters using the Compugen mouse long oligo microarrays. A total of 248 genes were dynamically upregulated and 208 downregulated between E12.5 and P75. At E12.5, when the mouse ureter is comprised of a simple cuboidal epithelium surrounded by ureteric mesenchyme, genes previously reported to be expressed in the ureteric mesenchyme, foxC1 and foxC2 were upregulated. By E15.5 the epithelial layer develops into urothelium, impermeable to urine, and smooth muscle develops for the peristaltic movement of urine towards the bladder. The development of these two cell types coincided with the upregulation of UPIIIa, RAB27b and PPAR gamma reported to be expressed in the urothelium, and several muscle genes, Acta1, Tnnt2, Myocd, and Tpm2. In situ hybridization identified several novel genes with spatial expression within the smooth muscle, Acta1; ureteric mesenchyme and smooth muscle, Thbs2 and Co15a2; and urothelium, Kcnj8 and Adh1. This study marks the first known report defining global gene expression of the developing mouse ureter and will provide insight into the molecular mechanisms underlying kidney and lower urinary tract malformations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines (14, 16, and 18-22) are highly potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT). Molecular modeling studies with 3-fluoromethyl-7-(N-alkyl aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines, such as 16, suggested that the sulfonamide -NH-could form a hydrogen bond with the side chain of Lys57. However, SAR studies and analysis of the crystal structure of human PNMT (hPNMT) in complex with 7 indicated that the sulfonamide oxygens, and not the sulfonamide -NH-, formed favorable interactions with the enzyme. Thus, we hypothesized that replacement of the sulfonamide -NH-with a methylene group could result in compounds that would retain potency at PNMT and that would have increased lipophilicity, thus increasing the likelihood they will cross the blood brain barrier. A series of 3-fluoromethyl-7-sulfonyl-1,2,3,4-tetrahydroisoquinolines (23-30) were synthesized and evaluated for their PNMT inhibitory potency and affinity for the R2-adrenoceptor. A comparison of these compounds with their isosteric sulfonamides (14, 16, and 18-22) showed that the sulfones were more lipophilic but less potent than their corresponding sulfonamides. Sulfone 24 (hPNMT K-i = 1.3 mu M) is the most potent compound in this series and is quite selective for PNMT versus the R2-adrenoceptor, but 24 is less potent than the corresponding sulfonamide, 16 (hPNMT K-i = 0.13 mu M). We also report the crystal structure of hPNMT in complex with sulfonamide 15, from which a potential hydrogen bond acceptor within the hPNMT active site has been identified, the main chain carbonyl oxygen of Asn39. The interaction of this residue with the sulfonamide -NH-is likely responsible for much of the enhanced inhibitory potency of the sulfonamides versus the sulfones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The calcitonin receptor-like receptor (CRLR) and specific receptor activity modifying proteins (RAMPs) together form receptors for calcitonin gene-related peptide (CGRP) and/or adrenomedullin in transfected cells. 2. There is less evidence that innate CGRP and adrenomedullin receptors are formed by CRLR/RAMP combinations. We therefore examined whether CGRP and/or adrenomedullin binding correlated with CRLR and RAMP mRNA expression in human and rat cell lines known to express these receptors. Specific human or rat CRLR antibodies were used to examine the presence of CRLR in these cells. 3. We confirmed CGRP subtype 1 receptor (CGRP(1)) pharmacology in SK-N-MC neuroblastoma cells. L6 myoblast cells expressed both CGRP(1) and adrenomedullin receptors whereas Rat-2 fibroblasts expressed only adrenomedullin receptors. In contrast we could not confirm CGRP(2) receptor pharmacology for Col-29 colonic epithelial cells, which, instead were CGRP(1)-like in this study. 4. L6, SK-N-MC and Col-29 cells expressed mRNA for RAMP1 and RAMP2 but Rat-2 fibroblasts had only RAMP2. No cell line had detectable RAMP3 mRNA. 5. SK-N-MC, Col-29 and Rat-2 fibroblast cells expressed CRLR mRNA. By contrast, CRLR mRNA was undetectable by Northern analysis in one source of L6 cells. Conversely, a different source of L6 cells had mRNA for CRLR. All of the cell lines expressed CRLR protein. Thus circumstances where CRLR mRNA is apparently absent by Northern analysis do not exclude the presence of this receptor. 6. These data strongly support CRLR, together with appropriate RAMPs as binding sites for CGRP and adrenomedullin in cultured cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tic-like movements in rodents bear close similarities to those observed in humans both pharmacologically and morphologically. Pharmacologically, tics are modulated by serotonergic and dopaminergic systems and abnormalities of these systems have been reported in Tourette's Syndrome (TS). Therefore, serotonergic and dopaminergic modulation of tics induced by a thyrotrophin-releasing hormone (TRH) analogue were studied as possible models for TS. The TRH analogue MK771 induced a variety of tic like movements in mice; blinking fore-paw-licking and fore-paw-tremor were quantified and serotonergic and dopaminergic modulation was investigated. The selective dopamine D1 receptor antagonists SCH23390 and SCH39166 and dopamine D2 antagonists raclopride and sulpiride had no effect on MK771 induced blinking. The D1 antagonists attenuated fore-paw-tremor and -licking while the D2 antagonists were generally without effect on these behaviours. Ketanserin (5-HT2A/ alpha-1 antagonist) and ritanserin (5-HT2A/2C antagonist) were able to attenuate MK771-induced blinking and ketanserin, mianserin (5-HT2A/2C antagonist) and prazosin (alpha-1 adrenoceptor antagonist) were able to attenuate MK771-induced fore-paw-tremor and -licking. The 5-HT2C/2B antagonist SB200646A was without effect on blinking and fore-paw-licking but dose-dependently potentiated fore-paw-tremor. The 5-HT1A agonists 8-OH DPAT and buspirone attenuated blinking at the lower doses tested but were ineffective at the higher doses; the converse was found for fore-paw-licking and -tremor behaviours.The effects of these ligands appeared to be at a postsynaptic 5-HTlA site since para-chlorophenylalanine was without effect on the manipulation of these behaviours. (S)-W A Y100135 was without effect on MK771-induced behaviours, spontaneous and DOl-induced head shakes. Because kynurenine potentiates head shakes and plasma concentrations are raised in TS patients the effects of kynurenine on the 5-HT2A/2C agonist DOl mediated head shake were established. Kynurenine potentiated the DOl head shake. Attempts were made to correlate serotonergic unit activity with tic like behaviour in cats but this proved unsuccessful. However, the pharmacological understanding of 5-HTlA receptor function has been hampered because of the lack of selective antagonists for this site. For this reason the effects of the novel 5-HTlA antagonists (S)-WA Y- 100135 and WAY -100635 were tested on 5-HT single-unit activity recorded from the dorsal-raphe-nucleus in the behaving cat. Both drugs antagonised the suppression of unit activity caused by 8-0H DPAT. (S)-WA Y-100135 reduced unit activity whereas WAY-100635 increased it. This suggests that WAY-100635 is acting as an antagonist at the 5-HTlA somatodendritic autoreceptor and that (S)W A Y -100135 acts as a partial agonist at this site. Aspects of tic like behaviour and serotonergic control are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been made of drugs acting at 5-HT receptors on animal models of anxiety. An elevated X-maze was used as a model of anxiety for rats and the actions of various ligands for the 5-HT receptor, and its subtypes, were examined in this model. 5-HT agonists, with varying affinities for the 5-HT receptor subtypes, were demonstrated to have anxiogenic-like activity. The 5-HT2 receptor antagonists ritanserin and ketanserin exhibited an anxiolytic-like profile. The new putatuve anxiolytics ipsapirone and buspirone, which are believed to be selective for 5-HT1 receptors, were also examined. The former had an anxiolytic profile whilst the latter was without effect. Antagonism studies showed the anxiogenic response to 8-hydroxy-2-(Di-n-propylamino)tetralin (8-OH-DPAT) to be antagonised by ipsapirone, pindolol, alprenolol and para-chlorophenylalanine, but not by diazepam, ritanserin, metoprolol, ICI118,551 or buspirone. To confirm some of the results obtained in the elevated X-maze the Social Interaction Test of anxiety was used. Results in this test mirrored the effects seen with the 5-HT agonists, ipsapirone and pindolol, whilst the 5-HT2 receptor antagonists were without effect. Studies using operant conflict models of anxiety produced marginal and varying results which appear to be in agreement with recent criticisms of such models. Finally, lesions of the dorsal raphe nucleus (DRN) were performed in order to investigate the mechanisms involved in the production of the anxiogenic response to 8-OH-DPAT. Overall the results lend support to the involvement of 5-HT, and more precisely 5-HT1, receptors in the manifestation of anxiety in such animal models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were to examine the binding characteristics of the rat CGRP receptor and to further the classification of CGRP and amylin receptors in guinea-pig tissue preparations. Binding characteristics of CGRP were investigated on rat splenic, cerebellar and liver membrane preparations. Human-α-CGRP, rat-α-CGRP and the CGRP receptor analogues Tyrº -CGRPC28-37) and [Cys (ACM)2,7 ]-human CGRP and the CGRP receptor antagonist CGRPC8-37) were utilised in competitive radioligand binding experiments to identify possible CGRP receptor subtypes in these tissues. There appeared to be no significant differences between the rat CGRP receptors examined. A panel of monoclonal antibodies (Mabs) raised against CGRP were employed to investigate the structure-activity relationships of CGRP and its receptor. No differences between the tissue receptors were observed using this panel of Mabs. The effects of human-α, human-β, rat-α-CGRP, human and rat amylin and adrenomedullin(13-52) were examined on the spontaneously beating right atria and on electrically evoked twitch contractions of isolated guinea-pig ileum, vas deferens and left atria. All of the peptides caused concentration-dependent inhibition of twitch amplitude in the ileum and vas deferens. CGRP produced positive inotropic effects in the right and left atria and positive chronotropic effects in the right atria. A variety of CGRP receptor antagonists and putative amylin receptor antagonists were used to antagonise these effects. CGRP(8-37) is currently used as a basis for CGRP receptor classification (Dennis, et al., 1989). Based upon results obtained using CGRP(8-37) it has been shown that the guinea-pig ileum contains mainly CGRP 1 receptors and the vas deferens contain CGRP2 receptors. Amylin was shown to act at receptors distinct from those for CGRP and it is postulated that amylin has its own receptors in these preparations. Experiments using CGRP (19-37) and Tyrº -CGRP(28-37) indicate that human and rat CGRP act at distinct receptors in guinea-pig ileum and vas deferens. The amylin receptor antagonist amylin(8-37) and the putative antagonist AC187 provide evidence to suggest human and rat amylin also act at receptors able to distinguish between the two types of amylin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the 'ADMR'), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Although it is established that the receptor activity modifying proteins (RAMPs) can interact with a number of GPCRs, little is known about the consequences of these interactions. Here the interaction of RAMPs with the glucagon-like peptide 1 receptor (GLP-1 receptor), the human vasoactive intestinal polypeptide/pituitary AC-Activating peptide 2 receptor (VPAC) and the type 1 corticotrophin releasing factor receptor (CRF) has been examined. Experimental Approach GPCRs were co-transfected with RAMPs in HEK 293S and CHO-K1 cells. Cell surface expression of RAMPs and GPCRs was examined by elisa. Where there was evidence for interactions, agonist-stimulated cAMP production, Ca mobilization and GTPγS binding to G, G, G and G were examined. The ability of CRF to stimulate adrenal corticotrophic hormone release in Ramp2 mice was assessed. Key Results The GLP-1 receptor failed to enhance the cell surface expression of any RAMP. VPAC enhanced the cell surface expression of all three RAMPs. CRF enhanced the cell surface expression of RAMP2; the cell surface expression of CRF was also increased. There was no effect on agonist-stimulated cAMP production. However, there was enhanced G-protein coupling in a receptor and agonist-dependent manner. The CRF: RAMP2 complex resulted in enhanced elevation of intracellular calcium to CRF and urocortin 1 but not sauvagine. In Ramp2 mice, there was a loss of responsiveness to CRF. Conclusions and Implications The VPAC and CRF receptors interact with RAMPs. This modulates G-protein coupling in an agonist-specific manner. For CRF, coupling to RAMP2 may be of physiological significance. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the actions of the novel enzyme-resistant, NH 2-terminally modified GIP analog (Hyp3)GIP and its fatty acid-derivatized analog (Hyp3)GIPLys16PAL. Acute effects are compared with the established GIP receptor antagonist (Pro3)GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp 3)GIP or (Hyp3)GIPLys16PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp 3)GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp3)GIP and (Hyp3)GIPLys16PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp3)GIP and (Hyp 3)GIPLys16PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp 3)GIP to extend bioactivity does not appear to be of any additional benefit. Copyright © 2007 the American Physiological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose of review: Although cachexia has a major effect on both the morbidity and mortality of cancer patients, information on the mechanisms responsible for this condition is limited. This review summarizes recent data in this area. Recent findings: Cachexia is defined as loss of muscle, with or without fat, frequently associated with anorexia, inflammation and insulin resistance. Loss of adipose mass is due to an increased lipolysis through an increased expression of hormone-sensitive lipase. Adipose tissue does not contribute to the inflammatory response. There is an increased phosphorylation of both protein kinase R (PKR) and eukaryotic initiation factor 2 on the α-subunit in skeletal muscle of cachectic cancer patients, which would lead to muscle atrophy through a depression in protein synthesis and an increase in degradation. Mice lacking the ubiquitin ligase MuRF1 are less susceptible to muscle wasting under amino acid deprivation. Expression of MuRF1 and atrogin-1 is increased by oxidative stress, whereas nitric oxide may protect against muscle atrophy. Levels of interleukin (IL)-6 correlate with cachexia and death due to an increase in tumour burden. Ghrelin analogues and melanocortin receptor antagonists increase food intake and may have a role in the treatment of cachexia. Summary: These findings provide impetus for the development of new therapeutic agents. © 2010 Wolters Kluwer Health

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Gastric cancer is currently the fourth higher cancer mortality rate among men in the world and the fifth among women, despite the progressive advances in oncology. The identification of tumor receptors and the development of target-drugs to block them has contributed to increased survival and quality of life of patients, but it becomes important to know the tumor profile of the population being treated, avoiding burdening treatment with examinations and treatments that are not cost-effective. Objective: To evaluate the profile of the population with gastric cancer treated in five years at the Clinical Hospital of the Federal University of Uberlândia and verify the correlation between overexpression of HER-2 receptor with an unfavorable prognosis. Methods: 203 records with gastric cancer were selected through the system database, attending a five-year period, of which 117 paraffin blocks were available for immunohistochemical assessment of HER2 receptor. Results: 2.6% of tumors showed overexpression of HER2, considering for this study two crosses as positive. There was no statistically significant difference in correlation between expression of the HER2 receptor with age, gender, tumor grade, local involvement, Lauren classification, Borrmann classification or staging. Conclusion: For this studied population, we can conclude that there is no need to employ HER2 blockers with high cost as a target-therapy in patients with gastric cancer, since no clinical benefit probably will be obtained due to a low percentage of these patients that demonstrated superexpression of this receptor or even there is no patients with gastric cancer with superexpression of HER2 with more than three crosses of positivity in immunochemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary heart disease is the major cause of morbidity and mortality throughout the world, and is responsible for approximately one of every six deaths in the US. Angina pectoris is a clinical syndrome characterized by discomfort, typically in the chest, neck, chin, or left arm, induced by physical exertion, emotional stress, or cold, and relieved by rest or nitroglycerin. The main goals of treatment of stable angina pectoris are to improve quality of life by reducing the severity and/or frequency of symptoms, to increase functional capacity, and to improve prognosis. Ranolazine is a recently developed antianginal with unique methods of action. In this paper, we review the pharmacology of ranolazine, clinical trials supporting its approval for clinical use, and studies of its quality of life benefits. We conclude that ranolazine has been shown to be a reasonable and safe option for patients who have refractory ischemic symptoms despite the use of standard medications (for example, nitrates, beta-adrenergic receptor antagonists, and calcium channel antagonists) for treatment of anginal symptoms, and also provides a modestly improved quality of life.