983 resultados para Adenine nucleotide translocator
Resumo:
In this paper, it was evaluated the total antioxidant capacity (TAC) of beverages using an electrochemical biosensor. The biosensor consisted on the purine base (guanine or adenine) electro-immobilization on a glassy carbon electrode surface (GCE). Purine base damage was induced by the hydroxyl radical generated by Fenton-type reaction. Five antioxidants were applied to counteract the deleterious effects of the hydroxyl radical. The antioxidants used were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants have the ability to scavenger the hydroxyl radical and protect the guanine and adenine immobilized on the GCE surface. The interaction carried out between the purinebase immobilized and the free radical in the absence and presence of antioxidants was evaluated by means of changes in the guanine and adenine anodic peak obtained by square wave voltammetry (SWV). The results demonstrated that the purine-biosensors are suitable for rapid assessment of TAC in beverages.
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
Background: The aim was to evaluate the presence of metabolic bone disease (MBD) in patients with Crohn’s disease (CD) and to identify potential etiologic factors. Methods: The case–control study included 99 patients with CD and 56 controls with a similar age and gender distribution. Both groups had dual-energy x-ray absorptionmetry and a nutritional evaluation. Single nucleotide polymorphisms at the IL1, TNF-a, LTa, and IL-6 genes were analyzed in patients only. Statistical analysis was performed using SPSS software. Results: The prevalence of MBD was significantly higher in patients (P ¼ 0.006). CD patients with osteoporosis were older (P < 0.005), small bowel involvement and surgical resections were more frequent (P < 0.005), they more often exhibited a penetrating or stricturing phenotype (P < 0.05), duration of disease over 15 years (P < 0.005), and body mass index (BMI) under 18.5 kg/m2 (P < 0.01) were more often found. No association was found with steroid use. Patients with a Z-score < 2.0 more frequently had chronic active disease (P < 0.05). With regard to diet, low vitamin K intake was more frequent (P ¼ 0.03) and intake of total, monounsaturated, and polyunsaturated fat was higher in patients with Z-score < 2.0 (P < 0.05). With respect to genetics, carriage of the polymorphic allele for LTa252 A/G was associated with a higher risk of osteoporosis (P ¼ 0.02). Regression analysis showed that age over 40 years, chronic active disease, and previous colonic resections were independently associated with the risk of developing MBD. Conclusions: The prevalence of MBD was significantly higher in CD patients. Besides the usual risk factors, we observed that factors related to chronic active and long-lasting disease increased the risk of MBD.
Resumo:
Background & aims: Crohn’s disease (CD) is a multifactorial disease where resistance to apoptosis is one major defect. Also, dietary fat intake has been shown to modulate disease activity. We aimed to explore the interaction between four single nucleotide polymorphisms (SNPs) in apoptotic genes and dietary fat intake in modulating disease activity in CD patients. Methods: Polymerase Chain Reaction (PCR) and Restriction Fragment Length Polymorphism (RFLP) techniques were used to analyze Caspase9þ93C/T, FasLigand-843C/T, Peroxisome Proliferator-Activated Receptor gammaþ161C/T and Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNPs in 99 patients with CD and 116 healthy controls. Interactions between SNPs and fat intake in modulating disease activity were analyzed using regression analysis. Results: None of the polymorphisms analyzed influenced disease susceptibility and/or activity, but a high intake of total, saturated and monounsaturated fats and a higher ratio of n-6/n-3 polyunsaturated fatty acids (PUFA), was associated with a more active phenotype (p < 0.05). We observed that the detrimental effect of a high intake of total and trans fat was more marked in wild type carriers of the Caspase9þ93C/T polymorphism [O.R (95%CI) 4.64 (1.27e16.89) and O.R (95%CI) 4.84 (1.34e17.50)]. In the Peroxisome Proliferator-Activated Receptor gamma Pro12Ala SNP, we also observed that a high intake of saturated and monounsaturated fat was associated to a more active disease in wild type carriers [OR (95%CI) 4.21 (1.33e13.26) and 4.37 (1.52e12.51)]. Finally, a high intake of n-6 PUFA was associated with a more active disease in wild type carriers for the FasLigand-843C/T polymorphism [O.R (95%CI) 5.15 (1.07e24.74)]. Conclusions: To our knowledge, this is the first study to disclose a synergism between fat intake and SNPs in apoptotic genes in modulating disease activity in CD patients.
Resumo:
Objectives - The aim of this work was to study the interaction between genetic polymorphisms (single-nucleotide polymorphisms, SNPs) of pro- and anti-inflammatory cytokines and fat intake on the risk of developing Crohn's disease (CD) or modifying disease activity. Methods - Seven SNPs in interleukin 1 (IL1), tumor necrosis factor alpha (TNFalpha), lymphotoxin alpha (LTalpha), and IL6 genes were analyzed in 116 controls and 99 patients with CD. The type of fat intake was evaluated, and the interaction between SNPs and dietary fat in modulating disease activity was analyzed. Results - Individuals who were homozygous for the IL6-174G/C polymorphism had a six-fold higher risk for CD (odds ratio (OR)=6.1; 95% confidence interval (95% CI)=1.9-19.4), whereas the TT genotype on the TNFalpha-857C/T polymorphism was associated with more active disease (OR=10.4; 95% CI=1.1-94.1). A high intake of total, saturated, and monounsaturated fats, as well as a higher ratio of n-6/n-3 polyunsaturated fatty acid (PUFA), was associated with a more active phenotype (P<0.05). Furthermore, there was an interaction between dietary fat intake and SNPs, with a high intake of saturated and monounsaturated fats being associated with active disease, mainly in patients carrying the variant alleles of the 857 TNFalpha polymorphism (OR=6.0, 95% CI=1.4-26.2; OR=5.17; 95% CI=1.4-19.2, respectively) and the 174 IL6 polymorphism (OR=2.95; 95% CI=1.0-9.1; OR=3.21; 95% CI=1.0-10.4, respectively). Finally, low intake of n-3 PUFA and high n-6/n-3 PUFA ratio in patients with the TNFalpha 857 polymorphism were associated with higher disease activity (OR=3.6; 95% CI=1.0-13.0; OR=5.92; 95% CI=1.3-26.5, respectively). Conclusions - These results show that different types of fat may interact with cytokine genotype, modulating disease activity.
Resumo:
Introduction - Obesity became a major public health problem as a result of its increasing prevalence worldwide. Paraoxonase-1 (PON1) is an esterase able to protect membranes and lipoproteins from oxidative modifications. At the PON1 gene, several polymorphisms in the promoter and coding regions have been identified. The aims of this study were i) to assess PON1 L55M and Q192R polymorphisms as a risk factor for obesity in women; ii) to compare PON1 activity according to the expression of each allele in L55M and Q192R polymorphisms; iii) to compare PON1 activity between obese and normal-weight women. Materials and methods - We studied 75 healthy (35.9±8.2 years) and 81 obese women (34.3±8.2 years). Inclusion criteria for obese subjects were body mass index ≥30 kg/m2 and absence of inflammatory/neoplasic conditions or kidney/hepatic dysfunction. The two PON1 polymorphisms were assessed by real-time PCR with TaqMan probes. PON1 enzymatic activity was assessed by spectrophotometric methods, using paraoxon as a substrate. Results - No significant differences were found for PON1 activity between normal and obese women. Nevertheless, PON1 activity was greater (P<0.01) for the RR genotype (in Q192R polymorphism) and for the LL genotype (in L55M polymorphism). The frequency of allele R of Q192R polymorphism was significantly higher in obese women (P<0.05) and was associated with an increased risk of obesity (odds ratio=2.0 – 95% confidence interval (1.04; 3.87)). Conclusion - 55M and Q192R polymorphisms influence PON1 activity. The allele R of the Q192R polymorphism is associated with an increased risk for development of obesity among Portuguese Caucasian premenopausal women.
Resumo:
Objective - We aimed to identify the clinical and genetic [IL23 receptor (IL23R) single nucleotide polymorphisms (SNPs)] predictors of response to therapy in patients with ulcerative colitis. Patients and methods - A total of 174 patients with ulcerative colitis, 99 women and 75 men, were included. The mean age of the patients was 47±15 years and the mean disease duration was 11±9 years. The number of patients classified as responders (R) or nonresponders (NR) to several therapies was as follows: 110 R and 53 NR to mesalazine (5-ASA), 28 R and 20 NR to azathioprine (AZT), 18 R and 7 NR to infliximab. Clinical and demographic variables were recorded. A total of four SNPs were studied: IL23R G1142A, C2370A, G43045A, and G9T. Genotyping was performed by real-time PCR using Taqman probes. Results - Older patients were more prone to respond to 5-ASA (P=0.004), whereas those with pancolitis were less likely to respond to such therapies (P=0.002). Patients with extraintestinal manifestations (EIMs) were less likely to respond to 5-ASA (P=0.001), AZT (P=0.03), and corticosteroids (P=0.06). Carriers of the mutant allele for IL23R SNPs had a significantly higher probability of developing EIMs (P<0.05), a higher probability of being refractory to 5-ASA (P<0.03), but a higher likelihood of responding to AZT (P=0.05). A significant synergism was observed between IL23R C2370A and EIMs with respect to nonresponse to 5-ASA (P=0.03). Conclusion - Besides extent of disease and age at disease onset, the presence of EIMs may be a marker of refractoriness to 5-ASA, corticosteroids, and AZT. IL23R SNPs are associated both with EIMs and with nonresponse to 5-ASA and corticosteroids.
Resumo:
Introduction and Objectives - Paraoxonases may exert anti-atherogenic action by reducing lipid peroxidation. Previous studies examined associations between polymorphisms in the paraoxonase 1 (PON1) gene and development of coronary artery disease (CAD), with inconsistent results. Given the similarities in clinical and pathophysiological risk factors of CAD and calcific aortic valve stenosis (CAVS), we postulated a link between PON1 alleles and CAVS progression. Methods - We investigated the association between PON1 55 and 192 single nucleotide polymorphisms (SNPs), their enzyme activity, and CAVS progression assessed by aortic valve area and transvalvular peak velocity in 67 consecutive patients with moderate CAVS and 251 healthy controls. Results - PON1 paraoxonase activity was higher in CAVS patients (P<0.001). The PON1 genotype Q192R SNP (P=0.03) and variant allele (R192) (P=0.01) frequencies differed between CAVS patients and controls. Significant association existed between PON1 enzyme activity, phenotypic effects of PON1 192 genotype polymorphisms, and CAVS progression, but not between PON1 55 and high-density lipoprotein (P=0.44) or low-density lipoprotein cholesterol (P=0.12), between 192 genotype and high-density lipoprotein (P=0.24) or low-density lipoprotein cholesterol (P=0.52). Conclusion - The PON1 genotype Q192R SNP has an important effect on CAVS disease progression. This study helps outline a genotype-phenotype relationship for PON1 in this unique population.
Resumo:
We report the nucleotide sequence of a 17,893 bp DNA segment from the right arm of Saccharomyces cerevisiae chromosome VII. This fragment begins at 482 kb from the centromere. The sequence includes the BRF1 gene, encoding TFIIIB70, the 5' portion of the GCN5 gene, an open reading frame (ORF) previously identified as ORF MGA1, whose translation product shows similarity to heat-shock transcription factors and five new ORFs. Among these, YGR250 encodes a polypeptide that harbours a domain present in several polyA binding proteins. YGR245 is similar to a putative Schizosaccharomyces pombe gene, YGR248 shows significant similarity with three ORFs of S. cerevisiae situated on different chromosomes, while the remaining two ORFs, YGR247 and YGR251, do not show significant similarity to sequences present in databases.
Resumo:
Aim - To identify clinical and/or genetic predictors of response to several therapies in Crohn’s disease (CD) patients. Methods - We included 242 patients with CD (133 females) aged (mean ± standard deviation) 39 ± 12 years and a disease duration of 12 ± 8 years. The single-nucleotide polymorphisms (SNPs) studied were ABCB1 C3435T and G2677T/A, IL23R G1142A, C2370A, and G9T, CASP9 C93T, Fas G670A and LgC844T, and ATG16L1 A898G. Genotyping was performed with real-time PCR with Taqman probes. Results - Older patients responded better to 5-aminosalicylic acid (5-ASA) and to azathioprine (OR 1.07, p = 0.003 and OR 1.03, p = 0.01, respectively) while younger ones responded better to biologicals (OR 0.95, p = 0.06). Previous surgery negatively influenced response to 5-ASA compounds (OR 0.25, p = 0.05), but favoured response to azathioprine (OR 2.1, p = 0.04). In respect to genetic predictors, we observed that heterozygotes for ATGL16L1 SNP had a significantly higher chance of responding to corticosteroids (OR 2.51, p = 0.04), while homozygotes for Casp9 C93T SNP had a lower chance of responding both to corticosteroids and to azathioprine (OR 0.23, p = 0.03 and OR 0.08, p = 0.02,). TT carriers of ABCB1 C3435T SNP had a higher chance of responding to azathioprine (OR 2.38, p = 0.01), while carriers of ABCB1 G2677T/A SNP, as well as responding better to azathioprine (OR 1.89, p = 0.07), had a lower chance of responding to biologicals (OR 0.31, p = 0.07), which became significant after adjusting for gender (OR 0.75, p = 0.005). Conclusions - In the present study, we were able to identify a number of clinical and genetic predictors of response to several therapies which may become of potential utility in clinical practice. These are preliminary results that need to be replicated in future pharmacogenomic studies.
Resumo:
Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA21) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH• radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADHmeasured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50nMof AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.
Resumo:
Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADPsensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors.