823 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

High performance video codec is mandatory for multimedia applications such as video-on-demand and video conferencing. Recent research has proposed numerous video coding techniques to meet the requirement in bandwidth, delay, loss and Quality-of-Service (QoS). In this paper, we present our investigations on inter-subband self-similarity within the wavelet-decomposed video frames using neural networks, and study the performance of applying the spatial network model to all video frames over time. The goal of our proposed method is to restore the highest perceptual quality for video transmitted over a highly congested network. Our contributions in this paper are: (1) A new coding model with neural network based, inter-subband redundancy (ISR) prediction for video coding using wavelet (2) The performance of 1D and 2D ISR prediction, including multiple levels of wavelet decompositions. Our result shows a short-term quality enhancement may be obtained using both 1D and 2D ISR prediction.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Measuring perceptions of customers can be a major problem for marketers of tourism and travel services. Much of the problem is to determine which attributes carry most weight in the purchasing decision. Older travellers weigh many travel features before making their travel decisions. This paper presents a descriptive analysis of neural network methodology and provides a research technique that assesses the weighting of different attributes and uses an unsupervised neural network model to describe a consumer-product relationship. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalised linear models. Artificial neural networks or neural networks are, however, nonlinear and do not require the same restrictive assumptions about the relationship between the independent variables and dependent variables. Using neural networks is one way to determine what trade-offs older travellers make as they decide their travel plans. The sample of this study is from a syndicated data source of 200 valid cases from Western Australia. From senior groups, active learner, relaxed family body, careful participants and elementary vacation were identified and discussed. (C) 2003 Published by Elsevier Science Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologiea da Universidade Nova de Lisboa, para obtenção do Grau de Mestre em Engenharia Biomédica