961 resultados para Actuation control technique
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
Study Design. A multicenter, randomized controlled trial with unblinded treatment and blinded outcome assessment was conducted. The treatment period was 6 weeks with follow-up assessment after treatment, then at 3, 6, and 12 months. Objectives. To determine the effectiveness of manipulative therapy and a low-load exercise program for cervicogenic headache when used alone and in combination, as compared with a control group. Summary of Background Data. Headaches arising from cervical musculoskeletal disorders are common. Conservative therapies are recommended as the first treatment of choice. Evidence for the effectiveness of manipulative therapy is inconclusive and available only for the short term. There is no evidence for exercise, and no study has investigated the effect of combined therapies for cervicogenic headache. Methods. In this study, 200 participants who met the diagnostic criteria for cervicogenic headache were randomized into four groups: manipulative therapy group, exercise therapy group, combined therapy group, and a control group. The primary outcome was a change in headache frequency. Other outcomes included changes in headache intensity and duration, the Northwick Park Neck Pain Index, medication intake, and patient satisfaction. Physical outcomes included pain on neck movement, upper cervical joint tenderness, a craniocervical flexion muscle test, and a photographic measure of posture. Results. There were no differences in headache-related and demographic characteristics between the groups at baseline. The loss to follow-up evaluation was 3.5%. At the 12-month follow-up assessment, both manipulative therapy and specific exercise had significantly reduced headache frequency and intensity, and the neck pain and effects were maintained (P < 0.05 for all). The combined therapies was not significantly superior to either therapy alone, but 10% more patients gained relief with the combination. Effect sizes were at least moderate and clinically relevant. Conclusion. Manipulative therapy and exercise can reduce the symptoms of cervicogenic headache, and the effects are maintained.
Resumo:
This paper identifies research priorities in evaluating the ways in which "genomic medicine"-the use of genetic information to prevent and treat disease-may reduce tobacco-related harm by: (1) assisting more smokers to quit; (2) preventing non-smokers from beginning to smoke tobacco; and (3) reducing the harm caused by tobacco smoking. The method proposed to achieve the first aim is pharmacogenetics", the use of genetic information to optimise the selection of smoking-cessation programmes by screening smokers for polymorphisms that predict responses to different methods of smoking cessation. This method competes with the development of more effective forms of smoking cessation that involve vaccinating smokers against the effects of nicotine and using new pharmaceuticals (such as cannabinoid antagonists and nicotine agonists). The second and third aims are more speculative. They include: screening the population for genetic susceptibility to nicotine dependence and intervening (eg, by vaccinating children and adolescents against the effects of nicotine) to prevent smoking uptake, and screening the population for genetic susceptibility to tobacco-related diseases. A framework is described for future research on these policy options. This includes: epidemiological modelling and economic evaluation to specify the conditions under which these strategies are cost-effective; and social psychological research into the effect of providing genetic information on smokers' preparedness to quit, and the general views of the public on tobacco smoking.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.
Resumo:
This paper describes an example of spontaneous transitions between qualitatively different coordination patterns during a cyclic lifting and lowering task. Eleven participants performed 12 trials of repetitive lifting and lowering in a ramp protocol in which the height of the lower shelf was raised or lowered 1 cm per cycle between 10 and 50 cm. Two distinct patterns of coordination were evident: a squat technique in which moderate range of hip, knee and ankle movement was utilised and ankle plantar-flexion occurred simultaneously with knee and hip extension; and a stoop technique in which the range of knee movement was reduced and knee and hip extension was accompanied by simultaneous ankle dorsi-flexion. Abrupt transitions from stoop to squat techniques were observed during descending trials, and from squat to stoop during ascending trials. Indications of hysteresis was observed in that transitions were more frequently observed during descending trials, and the average shelf height at the transition was 5 cm higher during ascending trials. The transitions may be a consequence of a trade-off between the biomechanical advantages of each technique and the influence of the lift height on this trade-off.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
Age is a critical determinant of the ability of most arthropod vectors to transmit a range of human pathogens. This is due to the fact that most pathogens require a period of extrinsic incubation in the arthropod host before pathogen transmission can occur. This developmental period for the pathogen often comprises a significant proportion of the expected lifespan of the vector. As such, only a small proportion of the population that is oldest contributes to pathogen transmission. Given this, strategies that target vector age would be expected to obtain the most significant reductions in the capacity of a vector population to transmit disease. The recent identification of biological agents that shorten vector lifespan, such as Wolbachia, entomopathogenic fungi and densoviruses, offer new tools for the control of vector-borne diseases. Evaluation of the efficacy of these strategies under field conditions will be possible due to recent advances in insect age-grading techniques. Implementation of all of these strategies will require extensive field evaluation and consideration of the selective pressures that reductions in vector longevity may induce on both vector and pathogen.
Resumo:
The National Health and Medical Research Council has funded Professor Wayne Hall (University of Queensland) and Professor Simon Chapman (University of Sydney) for three years 2006-2008, to research aspects of the future of tobacco control, particularly in nations with advanced tobacco control programs like Australia. Dr Coral Gartner (UQ) and Ms Becky Freeman (USyd) are also working on the project. The University of Queensland's eSpace site provides links to papers and data appendices produced by the University of Queensland team on the project. Materials relevant to this project produced by the University of Sydney group are available at the link provided.
Resumo:
The extensive antigenic variation phenomena African trypanosomes display in their mammalian host have hampered efforts to develop effective vaccines against trypanosomiasis. Human disease management aims largely to treat infected hosts by chemotherapy, whereas control of animal diseases relies on reducing tsetse populations as well as on drug therapy. The control strategies for animal diseases are carried out and financed by livestock owners, who have an obvious economic incentive. Sustaining largely insecticide-based control at a local level and relying on drugs for treatment of infected hosts for a disease for which there is no evidence of acquired immunity could prove extremely costly in the long run. It is more likely that a combination of several methods in an integrated, phased and area-wide approach would be more effective in controlling these diseases and subsequently improving agricultural output. New approaches that are environmentally acceptable, efficacious and affordable are clearly desirable for control of various medically and agriculturally important insects including tsetse. Here, Serap Aksoy and colleagues discuss molecular genetic approaches to modulate tsetse vector competence.
Resumo:
The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
Force measurement in hypervelocity expansion tubes is not possible using conventional techniques. The stress wave force balance technique can be applied in expansion tubes to measure forces despite the short test times involved. This paper presents a new calibration technique for multiple-component stress wave force balances where an impulse response created using a load distribution is required and no orthogonal surfaces on the model exist.. This new technique relies on the tensorial superposition of single-component impulse responses analogous to the vectorial superposition of the calibration loads. The example presented here is that of a scale model of the Mars Pathfinder, but the technique is applicable to any geometry and may be useful for cases where orthogonal loads cannot be applied.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.