911 resultados para Acetic acid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microfluidic devices can be used for many applications, including the formation of well-controlled emulsions. In this study, the capability to continuously create monodisperse droplets in a microfluidic device was used to form calcium-alginate capsules.Calcium-alginate capsules have many potential uses, such as immunoisolation of cells and microencapsulation of active drug ingredients or bitter agents in food or beverage products. The gelation of calcium-alginate capsules is achieved by crosslinking sodiumalginate with calcium ions. Calcium ions dissociated from calcium carbonate due to diffusion of acetic acid from a sunflower oil phase into an aqueous droplet containing sodium-alginate and calcium carbonate. After gelation, the capsules were separated from the continuous oil phase into an aqueous solution for use in biological applications. Typically, capsules are separated bycentrifugation, which can damage both the capsules and the encapsulated material. A passive method achieves separation without exposing the encapsulated material or the capsules to large mechanical forces, thereby preventing damage. To achieve passiveseparation, the use of a microfluidic device with opposing channel wa hydrophobicity was used to stabilize co-laminar flow of im of hydrophobicity is accomplished by defining one length of the channel with a hydrogel. The chosen hydrogel was poly (ethylene glycol) diacrylate, which adheres to the glass surface through the use of self-assembled monolayer of 3-(trichlorosilyl)-propyl methacrylate. Due to the difference in surface energy within the channel, the aqueous stream is stabilized near a hydrogel and the oil stream is stabilized near the thiolene based optical adhesive defining the opposing length of the channel. Passive separation with co-laminar flow has shown success in continuously separating calcium-alginatecapsules from an oil phase into an aqueous phase. In addition to successful formation and separation of calcium alginate capsules,encapsulation of Latex micro-beads and viable mammalian cells has been achieved. The viability of encapsulated mammalian cells was determined using a live/dead stain. The co-laminar flow device has also been demonstrated as a means of separating liquid-liquidemulsions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A capillary electrophoresis method with contactless conductivity detection was evaluated as a new approach for quantification of creatine and phosphocreatine in human quadriceps femoris biopsy samples. The running buffers employed consisted of 1 M acetic acid at a pH of 2.3 for the determination of creatine and 50 mM 3-(N-morpholino)propanesulfonic acid/30 mM histidine at a pH of 6.4 for the determination of phosphocreatine in the centrifuged muscle extracts. The limits of detection for creatine and phosphocreatine were found to be 2.5 and 1.0 μM, respectively. Creatine and phosphocreatine were determined in six human muscle biopsy samples and the results were found comparable to those of a standard enzymatic assay. The procedures developed for creatine and phosphocreatine also allow the determination of creatinine as well as adenosine diphosphate and adenosine triphosphate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ethanol from lignocellulosic feedstocks is not currently competitive with corn-based ethanol in terms of yields and commercial feasibility. Through optimization of the pretreatment and fermentation steps this could change. The overall goal of this study was to evaluate, characterize, and optimize ethanol production from lignocellulosic feedstocks by the yeasts Saccharomyces cerevisiae (strain Ethanol Red, ER) and Pichia stipitis CBS 6054. Through a series of fermentations and growth studies, P. stipitis CBS 6054 and S. cerevisiae (ER) were evaluated on their ability to produce ethanol from both single substrate (xylose and glucose) and mixed substrate (five sugars present in hemicellulose) fermentations. The yeasts were also evaluated on their ability to produce ethanol from dilute acid pretreated hydrolysate and enzymatic hydrolysate. Hardwood (aspen), softwood (balsam), and herbaceous (switchgrass) hydrolysates were also tested to determine the effect of the source of the feedstock. P. stipitis produced ethanol from 66-98% of the theoretical yield throughout the fermentation studies completed over the course of this work. S. cerevisiae (ER) was determined to not be ideal for dilute acid pretreated lignocellulose because it was not able to utilize all the sugars found in hemicellulose. S. cerevisiae (ER) was instead used to optimize enzymatic pretreated lignocellulose that contained only glucose monomers. It was able to produce ethanol from enzymatically pretreated hydrolysate but the sugar level was so low (>3 g/L) that it would not be commercially feasible. Two lignocellulosic degradation products, furfural and acetic acid, were evaluated for whether or not they had an inhibitory effect on biomass production, substrate utilization, and ethanol production by P. stipitis and S. cerevisiae (ER). It was determined that inhibition is directly related to the concentration of the inhibitor and the organism. The final phase for this thesis focused on adapting P. stipitis CBS 6054 to toxic compounds present in dilute acid pretreated hydrolysate through directed evolution. Cultures were transferred to increasing concentrations of dilute acid pretreated hydrolysate in the fermentation media. The adapted strains’ fermentation capabilities were tested against the unadapted parent strain at each hydrolysate concentration. The fermentation capabilities of the adapted strain were significantly improved over the unadapted parentstrain. On media containing 60% hydrolysate the adapted strain yielded 0.30 g_ethanol/g_sugar ± 0.033 (g/g) and the unadapted parent strain yielded 0.11 g/g ±0.028. The culture has been successfully adapted to growth on media containing 65%, 70%, 75%, and 80% hydrolysate but with below optimal ethanol yields (0.14-0.19 g/g). Cell recycle could be a viable option for improving ethanol yields in these cases. A study was conducted to determine the optimal media for production of ethanol from xylose and mixed substrate fermentations by P. stipitis. Growth, substrate utilization, and ethanol production were the three factors used to evaluate the media. The three media tested were Yeast Peptone (YP), Yeast Nitrogen Base (YNB), and Corn Steep Liquor (CSL). The ethanol yields (g/g) for each medium are as follows: YP - 0.40-0.42, YNB -0.28-.030, and CSL - 0.44-.051. The results show that media containing CSL result in slightly higher ethanol yields then other fermentation media. P. stipitis was successfully adapted to dilute acid pretreated aspen hydrolysate in increasing concentrations in order to produce higher ethanol yields compared to the unadapted parent strain. S. cerevisiae (ER) produced ethanol from enzymatic pretreated cellulose containing low concentrations of glucose (1-3g/L). These results show that fermentations of lignocellulosic feedstocks can be optimized based on the substrate and organism for increased ethanol yields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation involves study of various aspects of sulfoxide chemistry. Specifically designed t-butyl and propanenitrile sulfoxides tethered to indole-2-carboxamide were used as a source of intramolecular sulfenylating agents to synthesize novel indolo[3,2-b]-1-5-benzothiazepinones which are structurally analogous to the other biologically active benzothiazepinones. This study reveals that the intramolecular cyclization of sulfoxide follows an electrophilic sulfenylation (Sulfoxide Electrophilic Sulfenylation, SES) reaction pathway. Evidence of the absence of sulfenic acid as a transient reactive intermediate in such intramolecular cyclization is also provided. In another study, sulfoxide was used as a “protecting group” of thioether to synthesize 8-membered, indole substituted, thiazocine-2-acetic acid derivative via Ring Closing Metathesis (RCM). Protection (oxidation) of inert (to RCM) sulfide to sulfoxide followed by RCM produced cyclized product in good yields. Deprotection (reduction) of sulfoxide was achieved using Lawessons Reagent (L.R.). Application of the sulfide-sulfoxide redox cycle to solve the existing difficulties in using RCM methodology to thioethers is illustrated. A new design of a “molecular brake”, based on the sulfide-sulfoxide redox cycle is described. N-Ar rotation in simple isoindolines is controlled by the oxidation state of the proximate sulfur atom. Sulfide [S(II)] shows “free” [brake OFF] N-Ar rotation whereas sulfoxide displayed hindered [brake ON] N-Ar rotation. The semi-empirical molecular orbital (PM3) calculations revealed concerted pyramidalization of amidic nitrogen with N-Ar rotation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extracellular peroxygenase of Agrocybe aegerita catalyzed the H(2)O(2)-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid) to give the human drug metabolites 5-hydroxypropranolol (5-OHP) and 4'-hydroxydiclofenac (4'-OHD). The reactions proceeded regioselectively with high isomeric purity and gave the desired 5-OHP and 4'-OHD in yields up to 20% and 65%, respectively. (18)O-labeling experiments showed that the phenolic hydroxyl groups in 5-OHP and 4'-OHD originated from H(2)O(2), which establishes that the reaction is mechanistically a peroxygenation. Our results raise the possibility that fungal peroxygenases may be useful for versatile, cost-effective, and scalable syntheses of drug metabolites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This is the seventh in a series of symposia devoted to talks by students on their biochemical engineering research. The first four meetings were held alternately at Kansas State University and the University of Nebraska–Lincoln, with participants from those two schools. The next two took place at Kansas State and then in conjunction with the 8lst American Institute of Chemical Engineers National Meeting in Kansas City, with attendees from Kansas State and Iowa State Universities. This meeting, at Iowa State, was the first to include participation from the University of Missouri–Columbia. Contents"Properties of Soluble and In:anoblized Dextransucrase," Hossein Kaboli and Yah Eric Chen, Iowa State University "Growth of Lipid-Producing Organisms on Formic and Acetic Acid-Containing Waste Waters," Lin-Chang Chiang, University of Missouri–Columbia "Design of an Automated Alkaline Copper Reducing Sugar Assay," Alfred R. Fratzke and James R. Frederick, Iowa State University "Determination of Oxygen Transfer Coefficients in Hydrocarbon Fermentations Using a Material Balance Method," Sarafin N. Sanchez and J. R. Gutierrez, Kansas State University "Oxygen Transfer Characteristics in One Stage and Two Stage Air-Lift Towers," Mark E. Orazem, Kansas State University "A Comparison of Biological Digestibility Tests for Cellulose," Dou-Houng Hwang, University of Missouri–Columbia "Mechanism of Enzymatic Hydrolysis of Cellulose," L. T. Fan, Yong-Hyun Lee, and Liang-Shih Fan, Kansas State University "Purification of Xylan-Hydrolyzing Enzymes," James R. Frederick, Alfred R. Fratzke, and Mary M. Frederick, Iowa State University "Cellulase Production from Bagasse and Pith," A. Ferrer, Y. Alroy, and I. Brito, Kansas State University

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs $+$ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) $+$ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) $+$ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) $+$ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. 'Real time' microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ $\pm$ DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ $+$ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intestinal bacterial metabolites are an important communication tool between the host immune system and the commensal microbiota to establish mutualism. In a recent paper published in Science, Wendy Garrett and her colleagues report an exciting role of the three most abundant microbial-derived short-chain fatty acids (SCFA), acetic acid, propionic acid and butyric acid, in colonic regulatory T cell (cTreg) homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Auxin is of vital importance in virtually every aspect of plant growth and development, yet, even after almost a century of intense study, major gaps in our knowledge of its synthesis, distribution, perception, and signal transduction remain. One unique property of auxin is its polar transport, which in many well-documented cases is a critical part of its mode of action. Auxin is actively transported through the action of both influx and efflux carriers. Inhibition of polar transport by the efflux inhibitor N-1-naphthylphthalamic acid (NPA) causes a complete cessation of leaf initiation, a defect that can be reversed by local application of the auxin, indole-3-acetic acid (IAA), to the responsive zone of the shoot apical meristem. In this study, we address the role of the auxin influx carrier in the positioning and outgrowth of leaf primordia at the shoot apical meristem of tomato. By using a combination of transport inhibitors and synthetic auxins, we demonstrate that interference with auxin influx has little effect on organ formation as such, but prevents proper localization of leaf primordia. These results suggest the existence of functional auxin concentration gradients in the shoot apical meristem that are actively set up and maintained by the action of efflux and influx carriers. We propose a model in which efflux carriers control auxin delivery to the shoot apical meristem, whereas influx and efflux carriers regulate auxin distribution within the meristem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of electrophoretic computer models and their use for simulation of electrophoretic processes has increased significantly during the last few years. Recently, GENTRANS and SIMUL5 were extended with algorithms that describe chemical equilibria between solutes and a buffer additive in a fast 1:1 interaction process, an approach that enables simulation of the electrophoretic separation of enantiomers. For acidic cationic systems with sodium and H3 0(+) as leading and terminating components, respectively, acetic acid as counter component, charged weak bases as samples, and a neutral CD as chiral selector, the new codes were used to investigate the dynamics of isotachophoretic adjustment of enantiomers, enantiomer separation, boundaries between enantiomers and between an enantiomer and a buffer constituent of like charge, and zone stability. The impact of leader pH, selector concentration, free mobility of the weak base, mobilities of the formed complexes and complexation constants could thereby be elucidated. For selected examples with methadone enantiomers as analytes and (2-hydroxypropyl)-β-CD as selector, simulated zone patterns were found to compare well with those monitored experimentally in capillary setups with two conductivity detectors or an absorbance and a conductivity detector. Simulation represents an elegant way to provide insight into the formation of isotachophoretic boundaries and zone stability in presence of complexation equilibria in a hitherto inaccessible way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists. METHODS The potent GRPr antagonist MJ9, Pip-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) (Pip, 4-amino-1-carboxymethyl-piperidine), was conjugated to 1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA), and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and radiolabeled with (68)Ga and (64)Cu. The GRPr affinity of the corresponding metalloconjugates was determined using (125)I-Tyr(4)-BN as a radioligand. The labeling efficiency of (68)Ga(3+) was compared between NODAGA-MJ9 and NOTA-MJ9 in acetate buffer, at room temperature and at 95°C. The (68)Ga and (64)Cu conjugates were further evaluated in vivo in PC3 tumor xenografts by biodistribution and PET imaging studies. RESULTS The half maximum inhibitory concentrations of all the metalloconjugates are in the high picomolar-low nanomolar range, and these are the most affine-radiolabeled GRPr antagonists we have studied so far in our laboratory. NODAGA-MJ9 incorporates (68)Ga(3+) nearly quantitatively (>98%) at room temperature within 10 min and at much lower peptide concentrations (1.4 × 10(-6) M) than NOTA-MJ9, for which the labeling yield was approximately 45% under the same conditions and increased to 75% at 95°C for 5 min. Biodistribution studies showed high and specific tumor uptake, with a maximum of 23.3 ± 2.0 percentage injected activity per gram of tissue (%IA/g) for (68)Ga-NOTA-MJ9 and 16.7 ± 2.0 %IA/g for (68)Ga-NODAGA-MJ9 at 1 h after injection. The acquisition of PET images with the (64)Cu-MJ9 conjugates at later time points clearly showed the efficient clearance of the accumulated activity from the background already at 4 h after injection, whereas tumor uptake still remained high. The high pancreas uptake for all radiotracers at 1 h after injection was rapidly washed out, resulting in an increased tumor-to-pancreas ratio at later time points. CONCLUSION We have developed 2 GRPr antagonistic radioligands, which are improved in terms of binding affinity and overall biodistribution profile. Their promising in vivo pharmacokinetic performance may contribute to the improvement of the diagnostic imaging of tumors overexpressing GRPr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lung cancer remains the most common cause of cancer deaths worldwide, yet there is currently a lack of diagnostic noninvasive biomarkers that could guide treatment decisions. Small molecules (<1,500 Da) were measured in urine collected from 469 patients with lung cancer and 536 population controls using unbiased liquid chromatography/mass spectrometry. Clinical putative diagnostic and prognostic biomarkers were validated by quantitation and normalized to creatinine levels at two different time points and further confirmed in an independent sample set, which comprises 80 cases and 78 population controls, with similar demographic and clinical characteristics when compared with the training set. Creatine riboside (IUPAC name: 2-{2-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-oxolan-2-yl]-1-methylcarbamimidamido}acetic acid), a novel molecule identified in this study, and N-acetylneuraminic acid (NANA) were each significantly (P < 0.00001) elevated in non-small cell lung cancer and associated with worse prognosis [HR = 1.81 (P = 0.0002), and 1.54 (P = 0.025), respectively]. Creatine riboside was the strongest classifier of lung cancer status in all and stage I-II cases, important for early detection, and also associated with worse prognosis in stage I-II lung cancer (HR = 1.71, P = 0.048). All measurements were highly reproducible with intraclass correlation coefficients ranging from 0.82 to 0.99. Both metabolites were significantly (P < 0.03) enriched in tumor tissue compared with adjacent nontumor tissue (N = 48), thus revealing their direct association with tumor metabolism. Creatine riboside and NANA may be robust urinary clinical metabolomic markers that are elevated in tumor tissue and associated with early lung cancer diagnosis and worse prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE Approximately 85% of cervical cancer cases and deaths occur in resource-constrained countries where best practices for prevention, particularly for women with HIV infection, still need to be developed. The aim of this study was to assess cervical cancer prevention capacity in select HIV clinics located in resource-constrained countries. MATERIALS AND METHODS A cross-sectional survey of sub-Saharan African sites of 4 National Institutes of Health-funded HIV/AIDS networks was conducted. Sites were surveyed on the availability of cervical cancer screening and treatment among women with HIV infection and without HIV infection. Descriptive statistics and χ or Fisher exact test were used as appropriate. RESULTS Fifty-one (65%) of 78 sites responded. Access to cervical cancer screening was reported by 49 sites (96%). Of these sites, 39 (80%) performed screening on-site. Central African sites were less likely to have screening on-site (p = .02) versus other areas. Visual inspection with acetic acid and Pap testing were the most commonly available on-site screening methods at 31 (79%) and 26 (67%) sites, respectively. High-risk HPV testing was available at 29% of sites with visual inspection with acetic acid and 50% of sites with Pap testing. Cryotherapy and radical hysterectomy were the most commonly available on-site treatment methods for premalignant and malignant lesions at 29 (74%) and 18 (46%) sites, respectively. CONCLUSIONS Despite limited resources, most sites surveyed had the capacity to perform cervical cancer screening and treatment. The existing infrastructure of HIV clinical and research sites may provide the ideal framework for scale-up of cervical cancer prevention in resource-constrained countries with a high burden of cervical dysplasia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.