997 resultados para Absalon, abp., 1128-1201.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent study, we reported that the accurate perception of beat structure in music ('perception of musical meter') accounted for over 40% of the variance in single word reading in children with and without dyslexia (Huss et al., 2011). Performance in the musical task was most strongly associated with the auditory processing of rise time, even though beat structure was varied by manipulating the duration of the musical notes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: A community-based randomized controlled trial (RCT) was conducted in urban areas characterized by high levels of disadvantage to test the effectiveness of the Incredible Years BASIC parent training program (IYBP) for children with behavioral problems. Potential moderators of intervention effects on child behavioral outcomes were also explored. Method: Families were included if the child (aged 32-88 months) scored above a clinical cutoff on the Eyberg Child Behavior Inventory (ECBI). Participants (n = 149) were randomly allocated on a 2:1 ratio to an intervention group (n = 103) or a waiting-list control group (n = 46). Child behavior, parenting skills, and parent well-being were assessed at baseline and 6 months later using parent-report and independent observations. An intention-to-treat analysis of covariance was used to examine postintervention differences between groups. Results: Statistically significant differences in child disordered behavior favored the intervention group on the ECBI Intensity (effect size = 0.7, p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to > 100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immuno-compromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a multidrug-resistant opportunistic pathogen that infects the airways of patients with cystic fibrosis (CF) and can survive intracellularly in macrophages and epithelial cells. The gentamicin protection assay, which relies on the poor ability of gentamicin or other aminoglycosides to permeate eukaryotic cell membranes, is traditionally employed to quantify intracellular bacteria. However, the high resistance of these bacteria to aminoglycosides hampers the use of the gentamicin protection assay to investigate intracellular infection by B. cenocepacia. Here, we report the construction of gentamicin-sensitive strains of B. cenocepacia carrying a deletion of the BCAL1674, BCAL1675, and BCAL1676 genes that form an operon encoding an AmrAB-OprA-like efflux pump. We show that bacteria carrying this deletion are hypersensitive to gentamicin and also delay phagolysosomal fusion upon infection of RAW 264.7 murine macrophages, as previously demonstrated for the parental strain. We also demonstrate for the first time that low concentrations of gentamicin can be used to effectively kill extracellular bacteria and reliably quantify the intracellular infection by B. cenocepacia, which can replicate in RAW 264.7 macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reported previously that a Salmonella enterica serovar Enteritidis dam mutant expressing a truncated Dam protein does not agglutinate in the presence of specific antibodies against O9 polysaccharide. Here we investigate the participation of Dam in lipopolysaccharide (LPS) synthesis in Salmonella. The LPS O-antigen profiles of a dam null mutant (SEDeltadam) and the Salmonella serovar Enteritidis parental strain were examined by using electrophoresis and silver staining. Compared to the parental strain, SEDeltadam produced LPS with shorter O-antigen polysaccharide chains. Since Wzz is responsible for the chain length distribution of the O antigen, we investigated whether Dam methylation is involved in regulating wzz expression. Densitometry analysis showed that the amount of Wzz produced by SEDeltadam is threefold lower than the amount of Wzz produced by the parental strain. Concomitantly, the activity of the wzz promoter in SEDeltadam was reduced nearly 50% in logarithmic phase and 25% in stationary phase. These results were further confirmed by reverse transcription-PCR showing that wzz gene expression was threefold lower in the dam mutant than in the parental strain. Our results demonstrate that wzz gene expression is downregulated in a dam mutant, indicating that Dam methylation activates expression of this gene. This work indicates that wzz is a new target regulated by Dam methylation and demonstrates that DNA methylation not only affects the production of bacterial surface proteins but also the production of surface polysaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wzz is a membrane protein that determines the chain length distribution of the O-antigen lipopolysaccharide by an unknown mechanism. Wzz proteins consist of two transmembrane helices separated by a large periplasmic loop. The periplasmic loop of Escherichia coli K-12 Wzz (244 amino acids from K65 to A308) was purified and found to be a monomer with an extended conformation, as determined by gel filtration chromatography and analytical ultracentrifugation. Circular dichroism showed that the loop has a 60% helical content. The Wzz periplasmic loop also contains three regions with predicted coiled coils. To probe the function of the predicted coiled coils, we constructed amino acid replacement mutants of the E. coli K-12 Wzz protein, which were designed so that the coiled coils could be separate without compromising the helicity of the individual molecules. Mutations in one of the regions, spanning amino acids 108 to 130 (region I), were associated with a partial defect in O-antigen chain length distribution, while mutants with mutations in the region spanning amino acids 209 to 223 (region III) did not have an apparent functional defect. In contrast, mutations in the region spanning amino acids 153 to 173 (region II) eliminated the Wzz function. This phenotype was associated with protein instability, most likely due to conformational changes caused by the amino acid replacements, which was confirmed by limited trypsin proteolysis. Additional mutagenesis based on a three-dimensional model of region I demonstrated that the amino acids implicated in function are all located at the same face of a predicted alpha-helix, suggesting that a coiled coil actually does not exist in this region. Together, our results suggest that the regions predicted to be coiled coils are important for Wzz function because they maintain the native conformation of the protein, although the existence of coiled coils could not be demonstrated experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.