998 resultados para ASYMMETRIC NUCLEAR-MATTER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translocations are known to affect the expression of genes at the breakpoints and, in the case of unbalanced translocations, alter the gene copy number. However, a comprehensive understanding of the functional impact of this class of variation is lacking. Here, we have studied the effect of balanced chromosomal rearrangements on gene expression by comparing the transcriptomes of cell lines from controls and individuals with the t(11;22)(q23;q11) translocation. The number of differentially expressed transcripts between translocation-carrying and control cohorts is significantly higher than that observed between control samples alone, suggesting that balanced rearrangements have a greater effect on gene expression than normal variation. Many of the affected genes are located along the length of the derived chromosome 11. We show that this chromosome is concomitantly altered in its spatial organization, occupying a more central position in the nucleus than its nonrearranged counterpart. Derivative 22-mapping chromosome 22 genes, on the other hand, remain in their usual environment. Our results are consistent with recent studies that experimentally altered nuclear organization, and indicated that nuclear position plays a functional role in regulating the expression of some genes in mammalian cells. Our study suggests that chromosomal translocations can result in hitherto unforeseen, large-scale changes in gene expression that are the consequence of alterations in normal chromosome territory positioning. This has consequences for the patterns of gene expression change seen during tumorigenesis-associated genome instability and during the karyotype changes that lead to speciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the unresolved questions of modern physics is the nature of Dark Matter. Strong experimental evidences suggest that the presence of this elusive component in the energy budget of the Universe is quite significant, without, however, being able to provide conclusive information about its nature. The most plausible scenario is that of weakly interacting massive particles (WIMPs), that includes a large class of non-baryonic Dark Matter candidates with a mass typically between few tens of GeV and few TeVs, and a cross section of the order of weak interactions. Search for Dark Matter particles using very high energy gamma-ray Cherenkov telescopes is based on the model that WIMPs can self-annihilate, leading to production of detectable species, like photons. These photons are very energetic, and since unreflected by the Universe's magnetic fields, they can be traced straight to the source of their creation. The downside of the approach is a great amount of background radiation, coming from the conventional astrophysical objects, that usually hides clear signals of the Dark Matter particle interactions. That is why good choice of the observational candidates is the crucial factor in search for Dark Matter. With MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes), a two-telescope ground-based system located in La Palma, Canary Islands, we choose objects like dwarf spheroidal satellite galaxies of the Milky Way and galaxy clusters for our search. Our idea is to increase chances for WIMPs detection by pointing to objects that are relatively close, with great amount of Dark Matter and with as-little-as-possible pollution from the stars. At the moment, several observation projects are ongoing and analyses are being performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S6 kinases (S6Ks) act to integrate nutrient and insulin signaling pathways and, as such, function as positive effectors in cell growth and organismal development. However, they also have been shown to play a key role in limiting insulin signaling and in mediating the autophagic response. To identify novel regulators of S6K signaling, we have used a Drosophila-based, sensitized, gain-of-function genetic screen. Unexpectedly, one of the strongest enhancers to emerge from this screen was the nuclear receptor (NR), Drosophila hormone receptor 3 (DHR3), a critical constituent in the coordination of Drosophila metamorphosis. Here we demonstrate that DHR3, through dS6K, also acts to regulate cell-autonomous growth. Moreover, we show that the ligand-binding domain (LBD) of DHR3 is essential for mediating this response. Consistent with these findings, we have identified an endogenous DHR3 isoform that lacks the DBD. These results provide the first molecular link between the dS6K pathway, critical in controlling nutrient-dependent growth, and that of DHR3, a major mediator of ecdysone signaling, which, acting together, coordinate metamorphosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently reported that nuclear grading in prostate cancer is subject to a strong confirmation bias induced by the tumor architecture. We now wondered whether a similar bias governs nuclear grading in breast carcinoma. An unannounced test was performed at a pathology conference. Pathologists were asked to grade nuclei in a PowerPoint presentation. Circular high power fields of 27 invasive ductal carcinomas were shown, superimposed over low power background images of either tubule-rich or tubule-poor carcinomas. We found (a) that diagnostic reproducibility of nuclear grades was poor to moderate (weighed kappa values between 0.07 and 0.54, 27 cases, 44 graders), but (b) that nuclear grades were not affected by the tumor architecture. We speculate that the categorized grading in breast cancer, separating tubule formation, nuclear pleomorphism, and mitotic figure counts in a combined three tier score, prevents the bias that architecture exerts on nuclear grades in less well-controlled situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CA88 is the first long nuclear repetitive DNA sequence identified in the blood fluke, Schistosoma mansoni. The assembled S. mansoni sequence, which contains the CA88 repeat, has 8,887 nucleotides and at least three repeat units of approximately 360 bp. In addition, CA88 also possesses an internal CA microsatellite, identified as SmBr18. Both PCR and BLAST analysis have been used to analyse and confirm the CA88 sequence in other S. mansoni sequences in the public database. PCR-acquired nuclear repetitive DNA sequence profiles from nine Schistosoma species were used to classify this organism into four genotypes. Included among the nine species analysed were five sequences of both African and Asian lineages that are known to infect humans. Within these genotypes, three of them refer to recognised species groups. A panel of four microsatellite loci, including SmBr18 and three previously published loci, has been used to characterise the nine Schistosoma species. Each species has been identified and classified based on its CA88 DNA fingerprint profile. Furthermore, microsatellite sequences and intra-specific variation have also been observed within the nine Schistosoma species sequences. Taken together, these results support the use of these markers in studying the population dynamics of Schistosoma isolates from endemic areas and also provide new methods for investigating the relationships between different populations of parasites. In addition, these data also indicate that Schistosoma magrebowiei is not a sister taxon to Schistosoma mattheei, prompting a new designation to a basal clade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic Engineering objective is to optimize network resource utilization. Although several works have been published about minimizing network resource utilization in MPLS networks, few of them have been focused in LSR label space reduction. This letter studies Asymmetric Merged Tunneling (AMT) as a new method for reducing the label space in MPLS network. The proposed method may be regarded as a combination of label merging (proposed in the MPLS architecture) and asymmetric tunneling (proposed recently in our previous works). Finally, simulation results are performed by comparing AMT with both ancestors. They show a great improvement in the label space reduction factor

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several protozoan parasites exist in the Trypanosomatidae family, including various agents of human diseases. Multiple lines of evidence suggest that important differences are present between the translational and mRNA processing (trans splicing) systems of trypanosomatids and other eukaryotes. In this context, certain small complexes of RNA and protein, which are named small nuclear ribonucleoproteins (U snRNPs), have an essential role in pre-mRNA processing, mainly during splicing. Even though they are well defined in mammals, snRNPs are still not well characterized in trypanosomatids. This study shows that a U5-15K protein is highly conserved among various trypanosomatid species. Tandem affinity pull-down assays revealed that this protein interacts with a novel U5-102K protein, which suggests the presence of a sub-complex that is potentially involved in the assembly of U4/U6-U5 tri-snRNPs. Functional analyses showed that U5-15K is essential for cell viability and is somehow involved with the trans and cis splicing machinery. Similar tandem affinity experiments with a trypanonosomatid U5-Cwc21 protein led to the purification of four U5 snRNP specific proteins and a Sm core, suggesting U5-Cwc-21 participation in the 35S U5 snRNP particle. Of these proteins, U5-200K was molecularly characterized. U5-200K has conserved domains, such as the DEAD/DEAH box helicase and Sec63 domains and displays a strong interaction with U5 snRNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal transport has been shown to enhance the migration of plutonium in groundwater downstream from contaminated sites, but little is known about the adsorption of ⁹⁰Sr and plutonium onto colloids in the soil solution of natural soils. We sampled soil solutions using suction cups, and separated colloids using ultrafiltration to determine the distribution of ²³⁹Pu and ⁹⁰Sr between the truly dissolved fraction and the colloidal fraction of the solutions of three Alpine soils contaminated only by global fallout from the nuclear weapon tests. Plutonium was essentially found in the colloidal fraction (>80%) and probably associated with organic matter. A significant amount of colloidal ⁹⁰Sr was detected in organic-rich soil solutions. Our results suggest that binding to organic colloids in the soil solutions plays a key role with respect to the mobility of plutonium in natural alpine soils and, to a lesser extent, to the mobility of ⁹⁰Sr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) compose a family of three nuclear receptors which act as lipid sensors to modulate gene expression. As such, PPARs are implicated in major metabolic and inflammatory regulations with far-reaching medical consequences, as well as in important processes controlling cellular fate. Throughout this review, we focus on the cellular functions of these receptors. The molecular mechanisms through which PPARs regulate transcription are thoroughly addressed with particular emphasis on the latest results on corepressor and coactivator action. Their implication in cellular metabolism and in the control of the balance between cell proliferation, differentiation and survival is then reviewed. Finally, we discuss how the integration of various intra-cellular signaling pathways allows PPARs to participate to whole-body homeostasis by mediating regulatory crosstalks between organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-based mechanisms play critical roles in the regulation of multiple cellular functions. NF-kappaB, a master regulator of inflammation, is an inducible transcription factor generally considered to be redox-sensitive, but the modes of interactions between oxidant stress and NF-kappaB are incompletely defined. Here, we show that oxidants can either amplify or suppress NF-kappaB activation in vitro by interfering both with positive and negative signals in the NF-kappaB pathway. NF-kappaB activation was evaluated in lung A549 epithelial cells stimulated with tumor necrosis factor alpha (TNFalpha), either alone or in combination with various oxidant species, including hydrogen peroxide or peroxynitrite. Exposure to oxidants after TNFalpha stimulation produced a robust and long lasting hyperactivation of NF-kappaB by preventing resynthesis of the NF-kappaB inhibitor IkappaB, thereby abrogating the major negative feedback loop of NF-kappaB. This effect was related to continuous activation of inhibitor of kappaB kinase (IKK), due to persistent IKK phosphorylation consecutive to oxidant-mediated inactivation of protein phosphatase 2A. In contrast, exposure to oxidants before TNFalpha stimulation impaired IKK phosphorylation and activation, leading to complete prevention of NF-kappaB activation. Comparable effects were obtained when interleukin-1beta was used instead of TNFalpha as the NF-kappaB activator. This study demonstrates that the influence of oxidants on NF-kappaB is entirely context-dependent, and that the final outcome (activation versus inhibition) depends on a balanced inhibition of protein phosphatase 2A and IKK by oxidant species. Our findings provide a new conceptual framework to understand the role of oxidant stress during inflammatory processes.