770 resultados para ARP poisoning
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an alkalisation, passivation, poisoning effect or shortcut effect. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In addition to a change in silicon morphology, modification of aluminium-silicon alloys with strontium or sodium increases the size of the eutectic grains. To determine the mechanism responsible, eutectic solidification in commercial purity and ultra-high purity aluminium-si I icon alloys, with and without strontium additions, was examined by a quenching technique. In the commercial unmodified alloy, nucleation was prolific while in the high-purity unmodified alloy few eutectic grains nucleated. The addition of strontium to the commercial alloy reduced the number of eutectic grains that nucleated. Addition of strontium to the high-purity alloy did not significantly alter nucleation. It is concluded that commercial purity alloys contain a large number of potent nuclei that are susceptible to poisoning by impurity modification. The flake-to-fibre transition that occurs with impurity modification is shown to be independent of any change in eutectic nucleation mode and frequency. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Additions of strontium to hypoeutectic aluminum-silicon alloys modify the morphology of the eutectic silicon phase from a coarse platelike structure to a fine fibrous structure. Thermal analysis, interrupted solidification, and microstructural examination of sand castings in this work revealed that, in addition to a change in silicon morphology, modification with strontium also causes an increase in the size of eutectic grains. The eutectic grain size increases because fewer grains nucleate, possibly due to poisoning of the phosphorus-based nucleants, that are active in the unmodified alloy. A simple growth model is developed to estimate the interface velocity during solidification of a eutectic grain. The model confirms, independent of microstructural observations, that the addition of 100 ppm strontium increases the eutectic grain size by at least an order of magnitude compared with the equivalent unmodified alloy. The model predicts that the growth velocity varies significantly during eutectic growth. At low strontium levels, these variations may be sufficient to cause transitions between flake and fibrous silicon morphologies depending on the casting conditions. The model can be used to rationally interpret the eutectic grain structure and silicon morphology of fully solidified aluminum-silicon castings and, when coupled with reliable thermal data, can be used to estimate the eutectic grain size.
Resumo:
At 38 sites in the dry sclerophyll forests of south-east Queensland, Australia, hollow-bearing trees were studied to determine the effects of past forestry practices on their density, size and spatial distribution. The density of hollow-bearing trees was reduced at sites that had been altered by poisoning and ringbarking of unmerchantable trees. This was especially the case for living hollow-bearing trees that were now at densities too low to support the full range of arboreal marsupials. Although there are presently enough hollow-bearing stags (i.e., dead hollow-bearing trees) to provide additional denning and nesting opportunities, the standing life of these hollow-bearing stags is lower than the living counterparts which means denning and nesting sites may be limited in the near future. The mean diameter at breast height (DBH) of hollow-bearing stags was significantly less than that of living hollow-bearing trees. This indicated that many large hollow-bearing stags may have a shorter standing life than smaller hollow-bearing stags. Hollow-bearing trees appear to be randomly distributed throughout the forest in both silviculturally treated and untreated areas. This finding is at odds with the suggestion by some forest managers that hollow-bearing trees should have a clumped distribution in dry sclerophyll forests of south-east Queensland.
Resumo:
To be able to determine the grain size obtained from the addition of a grain refining master alloy, the relationship between grain size (d), solute content (defined by the growth restriction factor Q), and the potency and number density of nucleant particles needs to be understood. A study was undertaken on aluminium alloys where additions of TiB2 and Ti were made to eight wrought aluminum alloys covering a range of alloying elements and compositions. It was found from analysis of the data that d = a/(3)root pct TiB2 + b/Q. From consideration of the experimental data and from further analysis of previously published data, it is shown that the coefficients a and b relate to characteristics of the nucleant particles added by a grain refiner. The term a is related to the maximum density of active TiB2 nucleant particles within the melt, while b is related to their potency. By using the analysis methodology presented in this article, the performance characteristics of different master alloys were defined and the effects of Zr and Si on the poisoning of grain refinement were illustrated.
Resumo:
The basis for the neuroprotectant effect of D-mannitol in reducing the sensory neurological disturbances seen in ciguatera poisoning, is unclear. Pacific ciguatoxin-1 (P-CTX-1), at a concentration 10 nM, caused a statistically significant swelling of rat sensory dorsal root ganglia (DRG) neurons that was reversed by hyperosmolar 50 MM D-mannitol. However, using electron paramagnetic resonance (EPR) spectroscopy, it was found that P-CTX-1 failed to generate hydroxyl free radicals at concentrations of toxin that caused profound effects on neuronal excitability. Whole-cell patch-clamp recordings from DRG neurons revealed that both hyper- and iso-osmolar 50 MM D-mannitol prevented the membrane depolarisation and repetitive firing of action potentials induced by P-CTX-1. In addition, both hyper- and iso-osmolar 50 MM D-mannitol prevented the hyperpolarising shift in steady-state inactivation and the rise in leakage current through tetrodotoxin (TTX)-sensitive Na-v channels, as well as the increased rate of recovery from inactivation of TTX-resistant Nav channels induced by P-CTX-1. D-Mannitol also reduced, but did not prevent, the inhibition of peak TTX-sensitive and TTX-resistant I-Na amplitude by P-CTX-1. Additional experiments using hyper- and isoosmolar D-sorbitol, hyperosmolar sucrose and the free radical scavenging agents Trolox (R) and L-ascorbic acid showed that these agents, unlike D-mannitol, failed to prevent the effects of P-CTX-1 on spike electrogenesis and Na-v channel gating. These selective actions of D-mannitol indicate that it does not act purely as an osmotic agent to reduce swelling of nerves, but involves a more complex action dependent on the Nav channel subtype, possibly to alter or reduce toxin association. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
Introduced mammals are major drivers of extinction and ecosystem change. As omnivores, feral pigs (Sus scrofa) are responsible for wholesale adverse effects on islands. Here, we report on the eradication of feral pigs from Santiago Island in the Galápagos Archipelago, Ecuador, which is the largest insular pig removal to date. Using a combination of ground hunting and poisoning, over 18,000 pigs were removed during this 30-year eradication campaign. A sustained effort, an effective poisoning campaign concurrent with the hunting program, access to animals by cutting more trails, and an intensive monitoring program all proved critical to the successful eradication. While low and fluctuating control efforts may help protect select native species, current eradication methods, limited conservation funds, and the potential negative non-target impacts of sustained control efforts all favor an intense eradication effort, rather than a sustained control program. The successful removal of pigs from Santiago Island sets a new precedent, nearly doubling the current size of a successful eradication, and is leading to more ambitious projects. However, now we must turn toward increasing eradication efficiency. Given limited conservation funds, we can no longer afford to spend decades removing introduced mammals from islands.
Resumo:
A three-year programme to eradicate Feral Cats Felis catus from the island of Baltra in the Galapagos archipelago achieved good results by Initially poisoning with sodium monofluoroacetate (compound 1080) then trapping or shooting the remaining cats. The poisoning campaign removed 90% of the cats, its success being attributable to pre-baiting with unpolsoned baits to accustom cats to eating baits and placing enough baits to ensure that all cats encountered several baits within their home range. This, together with the use of metaclopromide (Pileran) as an anti-emetic, overcame a problem associated with poor retention of 1080 in thawed fish baits that limited the dose available to 1 mg 1080lbait, a quality Insufficient to kill large cats. Removal of the remaining cats was delayed by a weather-Induced irruption of Black Rats Rattus rattus and House Mice Mus musculus that enabled recruitment of kittens in 2002, but made cats more susceptible to trapping and shooting in 2003 when rodent populations collapsed. Since July 2003 no sign of a cat has been detected on Baltra despite extensive searching and monitoring throughout 2004. As cat abundance has decreased there have been more locally-bred Juvenile iguanas (Conolophus subcristatus) seen during annual censuses. However, such recruitment may reflect the increasing maturity and higher fecundity of iguanas repatriated from 1991 onwards rather than being a direct result of reduced cat predation alone. More time is necessary to determine the benefits of reduced cat predation on the Iguana population.
Resumo:
Inorganic arsenic compounds are known carcinogens. The human epidemiologic evidence of arsenic-induced skin, lung, and bladder cancers is strong. However, the evidence of arsenic carcinogenicity in animals is very limited. Lack of a suitable animal model until recent years has inhibited studies of the mechanism of arsenic carcinogenesis. The toxicity and bioavailability of arsenic depend on its solubility and chemical forms. Therefore, it is critical to be able to measure arsenic speciation accurately and reliably. However, speciation of arsenic in more complex matrices remains a real challenge. There are tens of millions of people who are being exposed to excessive levels of arsenic in the drinking water alone. The source of contamination is mainly of natural origin and the mass poisoning is occurring worldwide, particularly in developing countries. Chronic arsenicosis resulting in cancer and non-cancer diseases will impact significantly on the public health systems in their respective countries. Effective watershed management and remediation technologies in addition to medical treatment are urgently needed in order to avoid what has been regarded as the largest calamity of chemical poisoning in the world.
Resumo:
In this work, a working model is proposed of molecular sieve silica (MSS) multistage membrane systems for CO cleanup at high temperatures (up to 500 degrees C) in a simulated fuel cell fuel processing system. Gases are described as having little interactions with each other relative to the pore walls due to low isosteric heat of adsorption on silica surfaces and high temperatures. The Arrhenius function for activated transport of pure gases was used to predict mixture concentration in the permeate and retentate streams. Simulation predicted CO could be reduced to levels below the required 50 ppmv for polymer electrolyte membrane fuel cell anodes at a stage H-2/CO selectivity of higher than 40 in 4 series membrane units. Experimental validation showed predicting mixture concentrations required only pure gas permeation data. This model has significant application for setting industrial stretch targets and as a robust basis for complex membrane model configurations. (c) 2006 American Institute of Chemical Engineers.