909 resultados para ANANDAMIDE HYDROLYSIS
Resumo:
Calcium (Ca2+) is a versatile second messenger that regulates a wide range of cellular functions. Although it is not established how a single second messenger coordinates diverse effects within a cell, there is increasing evidence that the spatial patterns of Ca2+ signals may determine their specificity. Ca2+ signaling patterns can vary in different regions of the cell and Ca2+ signals in nuclear and cytoplasmic compartments have been reported to occur independently. No general paradigm has been established yet to explain whether, how, or when Ca2+ signals are initiated within the nucleus or their function. Here we highlight that receptor tyrosine kinases rapidly translocate to the nucleus. Ca2+ signals that are induced by growth factors result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. This novel signaling mechanism may be responsible for growth factor effects on cell proliferation.
Resumo:
Candida albicans is an opportunistic fungal pathogen that causes severe systemic infections in immunosuppressed individuals. C. albicans resistance to antifungal drugs is a severe problem in patients receiving prolonged therapy. Moreover, trailing yeast growth, which is defined as a resistant MIC after 48 h of incubation with triazole antifungal agents but a susceptible MIC after 24 h, has been noted in tests of antifungal susceptibility against some C. albicans isolates. In this context, we recently noticed this phenomenon in our routine susceptibility tests with fluconazole/itraconazole and C. albicans clinical isolates. In the present study, we investigated the production of cell-associated and secreted aspartyl peptidases (Saps) in six trailing clinical isolates of C. albicans, since this class of hydrolytic enzymes is a well-known virulence factor expressed by this fungal pathogen. Sap2, which is the best-studied member of the Sap family, was detected by flow cytometry on the cell surface of yeasts and as a 43-kDa polypeptide in the culture supernatant, as demonstrated by Western blotting assay using an anti-Sap1-3 polyclonal antibody. Released aspartyl peptidase activity was measured with BSA hydrolysis and inhibited by pepstatin A, showing distinct amounts of proteolytic activity ranging from 5.7 (strain 44B) to 133.2 (strain 11) arbitrary units. Taken together, our results showed that trailing clinical isolates of C. albicans produced different amounts of both cellular and secreted aspartyl-type peptidases, suggesting that this phenotypic feature did not generate a regular pattern regarding the expression of Sap.
Resumo:
Gadolinium (Gd) blocks intra- and extracellular ATP hydrolysis. We determined whether Gd affects vascular reactivity to contractile responses to phenylephrine (PHE) by blocking aortic ectonucleoside triphosphate diphosphohydrolase (E-NTPDase). Wistar rats of both sexes (260-300 g, 23 females, 7 males) were used. Experiments were performed before and after incubation of aortic rings with 3 µM Gd. Concentration-response curves to PHE (0.1 nM to 0.1 mM) were obtained in the presence and absence of endothelium, after incubation with 100 µM L-NAME, 10 µM losartan, or 10 µM enalaprilat. Gd significantly increased the maximum response (control: 72.3 ± 3.5; Gd: 101.3 ± 6.4%) and sensitivity (control: 6.6 ± 0.1; Gd: 10.5 ± 2.8%) to PHE. To investigate the blockade of E-NTDase activity by Gd, we added 1 mM ATP to the bath. ATP reduced smooth muscle tension and Gd increased its relaxing effect (control: -33.5 ± 4.1; Gd: -47.4 ± 4.1%). Endothelial damage abolished the effect of Gd on the contractile responses to PHE (control: 132.6 ± 8.6; Gd: 122.4 ± 7.1%). L-NAME + Gd in the presence of endothelium reduced PHE contractile responses (control/L-NAME: 151.1 ± 28.8; L-NAME + Gd: 67.9 ± 19% AUC). ATP hydrolysis was reduced after Gd administration, which led to ATP accumulation in the nutrient solution and reduced ADP concentration, while adenosine levels remained the same. Incubation with Gd plus losartan and enalaprilat eliminated the pressor effects of Gd. Gd increased vascular reactivity to PHE regardless of the reduction of E-NTPDase activity and adenosine production. Moreover, the increased reactivity to PHE promoted by Gd was endothelium-dependent, reducing NO bioavailability and involving an increased stimulation of angiotensin-converting enzyme and angiotensin II AT1 receptors.
Resumo:
This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.
Resumo:
N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.
Resumo:
The importance of starch for the food industry makes it necessary to develop new, fast, economic and accurate methodologies for its quantification. In the present paper starch hydrolysis using commercial enzymes of industrial grade are studied aiming to develop an easy and cheap analysis, available to a greater number of industries and technicians. The proposed method is simple, divided in a first step where soluble sugars are eliminated from the samples by using dialysis, followed by starch hydrolysis of the retained fraction with a thermoresistent bacterial alfa-amylase (Termamyl 120L®) and an amyloglucosidase (AMG 300L®). The hydrolysis conditions were those suggested by the enzyme producer. After the hydrolysis step the material was dialysed again for the extraction of glucose that was quantified by the glucose-oxidase colorimetric reactant. The results allowed the construction of calibration equations for starch determination on the analyzed samples. These samples were produced on a laboratory scale and native and acid-modified corn starches were added in known concentrations. By considering the final dilutions employed for glucose determination on the samples, it was possible to confirm that they were identical to that of the glucose-oxidase reactant calibration.
Resumo:
Chickpea seed germination was carried out over a period of 6 days. Little variation in the nitrogen and total globulin content was observed. The major globulin (11 S type) showed higher variation after the 4th day of germination. The elution behaviour and distribution of the isolated major globulin fraction on Sepharose CL-6B chromatography showed little modification at the end of germination. On SDS-PAGE the peak eluted from Sepharose CL-6B showed changes in protein bands between 20 and 30 kDa and above 60 kDa, indicating protein degradation during the period. Proteolytic activity was detected in the albumin fraction of the seeds, which increased up to the fourth and then decreased up to the sixth day, when isolated chickpea total globulin and casein were used as substrates. Chickpea flour, isolated albumin and total globulin fractions did not show an increase for in vitro digestibility; however, the isolated major globulin was more susceptible to hydrolysis after germination.
Resumo:
One third of the world's fishing produce is not directly used for human consumption. Instead, it is used for making animal food or is wasted as residue. It would be ideal to use the raw material thoroughly and to recover by-products, preventing the generation of residues. With the objectives of increasing the income and the production of the industry, as well as minimizing environmental and health problems from fish residue, chemical silage from Tilapia (Oreochromis niloticus) processing residues was developed after homogenization and acidification of the biomass with 3% formic acid: propionic, 1:1, addition of antioxidant BHT and maintenance of pH at approximately 4.0. Analyses to determine the moisture, protein, lipids and ash were carried out. The amino acids were examined in an auto analyzer after acid hydrolysis, except for the tryptophan which was determined through colorimetry. The tilapia silage presented contents that were similar to or higher than the FAO standards for all essential amino acids, except for the tryptophan. The highest values found were for glutamic acid, lysine and leucine. The results indicate a potential use of the silage prepared from the Nile tilapia processing residue as a protein source in the manufacturing of fish food.
Resumo:
A method to synthesize ethyl β-ᴅ-glucopyranoside (BEG) was searched. Feasibility of different ion exchange resins was examined to purify the product from the synthetic binary solution of BEG and glucose. The target was to produce at least 50 grams of 99 % pure BEG with a scaled up process. Another target was to transfer the batch process into steady-state recycle chromatography process (SSR). BEG was synthesized enzymatically with reverse hydrolysis utilizing β-glucosidase as a catalyst. 65 % of glucose reacted with ethanol into BEG during the synthesis. Different ion exchanger based resins were examined to separate BEG from glucose. Based on batch chromatography experiments the best adsorbent was chosen between styrene based strong acid cation exchange resins (SAC) and acryl based weak acid cation exchange resins (WAC). CA10GC WAC resin in Na+ form was chosen for the further separation studies. To produce greater amounts of the product the batch process was scaled up. The adsorption isotherms for the components were linear. The target purity was possible to reach already in batch without recycle with flowrate and injection size small enough. 99 % pure product was produced with scaled-up batch process. Batch process was transferred to SSR process utilizing the data from design pulse chromatograms and Matlab simulations. The optimal operating conditions for the system were determined. Batch and SSR separation results were compared and by using SSR 98 % pure products were gained with 40 % higher productivity and 40 % lower eluent consumption compared to batch process producing as pure products.
Resumo:
The common bean (Phaseolus vulgaris L.) is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3). The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco), treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition). The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour). The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above) was used. The concentration of total protein (g.100 g-1 of dry matter) in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter). The in vitro protein digestibility of enzymatically untreated bean flour (control) ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p < 0.05) after the enzyme treatment. The greatest change was observed in the OPNS cultivar treated with protease from Bacillus sp., which increased its digestibility from 54.4% (control treatment) to 81.6%.
Resumo:
In the present work, pineapple juice was first hydrolyzed with a commercial pectinase (Ultrazym 100 G) and then clarified by microfiltration. A tubular polyethersulfone membrane with an average cut-off of 0.3 µm and a total effective filtration area of 0.05 m² was applied. The transmembrane pressures were 1.5 and 3.0 bar, respectively, and the processes was conducted at room temperature. The results showed that the pineapple juice permeate fluxes were of 57.77 L/m²/hours (1.5 bar) and 46.85 L/m²/hours (3.0 bar). Concentration polarization and possibly fouling occurred during the processes. The best clarified juice fluxes were obtained when low transmembrane pressures (1.5 bar) were applied.
Resumo:
Frequent nut intake is associated with protective effects against cardiovascular diseases. In addition to the generally high contents of unsaturated fatty acids, polyphenol compounds seem to be also implicated in health promoting effects of nuts due to their antioxidant properties. In this way, eleven different kinds of nuts, including pinhao seeds (Araucaria angustifolia) and Brazil nuts (Bertholletia excelsa), typical of Brazil, were analyzed for the content of phenol compounds, including the potent anti-mutagenic and anti-cancer ellagic acid, and antioxidant capacity of methanolic extracts. The antioxidant capacity varied a hundred times among the different nuts, from 1.2 to 120 mg of Trolox equivalents.100 g-1 (FW). Total ellagic acid was determined after acid hydrolysis of ellagitannins and ellagic acid glycosides, and it was detected in only 3 of the 11 samples. The content of free and total ellagic acid in nuts varied from 0.37 to 41 and from 149 (chestnuts) to 823 (walnuts) mg.100 g-1 (FW), respectively. Among nuts, samples with the highest contents of ellagic acid (walnuts and pecans) also presented the highest total phenol contents and DPPH radical scavenging capacities. Pinhao seeds and Brazil nuts did not present significant amounts of phenols nor antioxidant capacity.
Resumo:
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (C PVA) of two types of poly (vinyl alcohol) (PVA) and the effect of the type and the concentration of plasticizers on the phase properties of biodegradable films based on blends of gelatin and PVA, using a response-surface methodology. The films were made by casting and the studied properties were their glass (Tg) and melting (Tm) transition temperatures, which were determined by diferential scanning calorimetry (DSC). For the data obtained on the first scan, the fitting of the linear model was statistically significant and predictive only for the second melting temperature. In this case, the most important effect on the second Tm of the first scan was due to the HD of the PVA. In relation to the second scan, the linear model could be fit to Tg data with only two statistically significant parameters. Both the PVA and plasticizer concentrations had an important effect on Tg. Concerning the second Tm of the second scan, the linear model was fit to data with two statistically significant parameters, namely the HD and the plasticizer concentration. But, the most important effect was provoked by the HD of the PVA.
Resumo:
Enzyme technology is an ever-growing field of knowledge and, in recent years, this technology has raised renewed interest, due to the search for new paradigms in several productive processes. Lipases, esterases and cutinases are enzymes used in a wide range of processes involving synthesis and hydrolysis reactions. The objective of this work was to investigate and compare the specific lipase and esterase activities of five enzymes - four already classified as lipases and one classified as cutinase - in the presence of natural and synthetic substrates. All tested enzymes presented both esterase and lipase specific activities. The highest specific esterase activity was observed for Aspergillus 1068 lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate, while the highest specific lipase activity was observed for Geotrichum sp. lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate. These results display some interface-independent lipolytic activity for all lipases tested. This is in accordance with the rationale that a new and broader definition of lipases may be necessary.
Resumo:
The effect of different process -defatting, protein concentration, thermal treatment, hydrolysis with Alcalase and in vitro digestion- on the antioxidant capacity of amaranth seeds was studied. The antioxidant capacity of the products was determined in methanolic and aqueous extracts and varied from 1.00 to 21.22 and 4.97 to 369.18 µ mol TE/g sample for DPPH and ORAC assays, respectively. The combination of protein concentration and hydrolysis with Alcalase led to products with higher antioxidant activity. However, after in vitro digestion, protein concentrate and its hydrolysate showed similar antioxidant capacity. A high correlation was observed between the antioxidant capacity and the total phenolic content for methanolic extracts, with r² values ranging from 0.6133 to 0.9352.