848 resultados para ALUMINIUM CHLORIDES
Resumo:
This work is part of a series of studies dealing with the evaluation of the effects of major elements of solid waste, especially metallic oxides, nitrates, sulfates, and chlorides, on the sintering and the densification of calcium hydroxyapatite (Ca-HAP) adsorbent. The effects of chloride salts of potassium (KCl) and zinc (ZnCl2) on sintering and densification of Ca-HAP were studied using surface area reduction and shrinkage measurements. The addition of KCl (2% w/w) activated the sintering process by bringing a swift reduction in surface area and lowering the densification temperature. However, a low final densification was achieved. Increasing the amount of this additive to 10% w/w further lowered the final densification and lowered the densification temperature of hydroxyapatite by 150 degrees C. On the other hand, the addition of 2 wt % of ZnCl2 deactivated the sintering process by slowing down the densification process and raising the densification temperature. However, the reduction of surface area was comparable to that of Ca-HAP. The densification rate contained two or more rate maxima indicating the additives (salts) bring multiple speeds in the densification process.
Resumo:
Detailed microscopic examination using optical and electron microscopes suggests that Al4C3, often observed in the central regions of magnesium grains on polished sections, is a potent substrate for primary Mg. Calculations of the crystallographic relationships between magnesium and Al4C3 further support the experimental observations. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effect of the beta phase in Mg-Al alloys on the corrosion performance of an anodised coating was studied. It was found that the corrosion resistance of the anodised coating was closely associated with the corrosion performance of the substrate alloy. In particular, Mg alloys with a dual phase microstructure of alpha + beta with intermediate aluminium contents (namely 5%, 10% and 22% Al) after anodisation had the highest corrosion rate and the worst corrosion resistance provide by the anodised coating. The poor performance of an anodised coating was attributed partly to lower corrosion resistance of the substrate alloy and partly to the higher porosity of the anodised coating. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Basic aluminium sulphate and nitrate crystals were prepared by forced hydrolysis of aluminium salt solution followed by precipitation with a sulphate solution or by evaporation for the basic aluminium nitrate. X-ray Photoelectron Spectroscopy (XPS) confirms the chemical composition determined by ICP-AES in earlier work. High resolution XPS scans of the individual elements allow the identification of both the central (AlO4)-Al-IV group and the 12 aluminium octahedra in the [IVAlO4AlVI(OH)(24)(H2O)(12)] building unit by two Al 2p transitions with binding energies of 73.7 and 74.2 eV in both the basic aluminium sulphate and nitrate. Four different types of oxygen atoms were identified in the basic aluminium sulphate associated with the central AlO4, OH, H2O and SO4 groups in the crystal structure with transitions at 529.4, 530.1, 530.7 and 531.8 eV, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An aluminum-alloyed coating was applied onto the surface of magnesium alloy AZ91D. The coating formed in aluminium powder at 420 degrees C is rich in the beta (Mg17Al12) phase. Polarisation curve, AC impedance, salt immersion and salt spray were carried out to investigate the corrosion behaviour and assess the corrosion performance of the coated magnesium alloy. It was found that a coated AZ91D specimen was much more corrosion resistant and harder than an uncoated one. The improved corrosion resistance was mainly ascribed to the high volume fraction of beta phase in the coating. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Alloys of Al-3.8Cu-1Mg-0.7Si, Al-4Cu-0.6Si-0.1Mg, Al-4Cu-1.2Mg and Al-1.9Mg-1.9Si were made using air atomised powder and conventional press-and-sinter powder metallurgy techniques. These were sintered under nitrogen with a controlled water content which varied from 3 to 630 ppm (a dew point of -69 to -25 degrees C), nitrogen-5%hydrogen, argon and argon-5% hydrogen, all at atmospheric pressure, or a vacuum of
Resumo:
This paper investigates the relationship between mechanical properties and microstructure in high pressure die cast binary Mg-Al alloys. As-cast test bars produced using high pressure die casting have been tested in tension in order to determine the properties for castings produced using this technique. It has been shown that increasing aluminium levels results in increases in yield strength and a decrease in ductility for these alloys. Higher aluminium levels also result in a decrease in creep rate at 150 degrees C. It has also been shown that an increase in aluminium levels results in an increase in the volume fraction of eutectic Mg17Al12 in the microstructure.
Resumo:
A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recently it has been shown that modification with strontium causes an increase in the size of eutectic grains. The eutectic grain size increases because there are fewer nucleation events, possibly due to the poisoning of phosphorus-based nuclei that are active in the unmodified alloy. The current paper investigates the effect of strontium concentration on the eutectic grain size. In the aluminium-10 wt.% silicon alloy used in this research, for fixed casting conditions, the eutectic grain size increases as the strontium concentration increases up to approximately 150ppm, beyond which the grain size is relatively stable. This critical strontium concentration is likely to differ depending on the composition of the base alloy, including the concentration of minor elements and impurities. It is concluded that processing and in-service properties of strontium modified aluminium-silicon castings are likely to be more stable if a minimum critical strontium concentration is exceeded. If operating below this critical strontium concentration exceptional control over composition and casting conditions is required. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The role of tin in the mechanism by which aluminium nitride grows on aluminium powder is explored. In the absence of tin, the aluminium powder nitrides rapidly, with growth occurring both into and out from the surface of the particles. In contrast, nitridation occurs more slowly in the presence of tin, which is incorporated in the growing nitride. When the tin is depleted, rapid nitridation occurs. The initial tin concentration determines the point at which the growth rate changes. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Using modifications to the Rappaz-Drezet-Gremaud hot tearing model, and using empirical equations developed for grain size and dendrite arm spacing (DAS) on the addition of grain refiner for a range of cooling rates, the effect of grain refinement and cooling rate on hot tearing susceptibility has been analysed. It was found that grain refinement decreased the grain size and made the grain morphology more globular. Therefore refining the grain size of an equiaxed dendritic grain decreased the hot tearing susceptibility. However, when the alloy was grain refined such that globular grain morphologies where obtained, further grain refinement increased the hot tearing susceptibility. Increasing the cooling decreased the grain size and made the grain morphology more dendritic and therefore increased the likelihood of hot tearing. The effect was particularly strong for equiaxed dendritic grain morphologies; hence grain refinement is increasingly important at high cooling rates to obtain more globular grain morphologies to reduce the hot tearing susceptibility.