1000 resultados para AESTHETIC RESTORATIVE MATERIALS
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
This work proposes a method of visualizing the trend of research in the field of ceramic membranes from 1999 to 2006. The presented approach involves identifying problems encountered during research in the field of ceramic membranes. Patents from US patent database and articles from Science Direct(& by ELSEVIER was analyzed for this work. The identification of problems was achieved with software Knowledgist which focuses on the semantic nature of a sentence to generate series of subject action object structures. The identified problems are classified into major research issues. This classification was used for the visualization of the intensity of research. The image produced gives the relation between the number of patents, with time and the major research issues. The identification of the most cited papers which strongly influence the research of the previously identified major issues in the given field was also carried out. The relations between these papers are presented using the metaphor of social network. The final result of this work are two figures, a diagram showing the change in the studied problems a specified period of time and a figure showing the relations between the major papers and groups of the problems
Resumo:
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data
Resumo:
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results
Resumo:
Existeixen diversos estudis que avaluen el consum energètic derivat del procés de producció deISF (Incremental Sheet Forming), principalment per materials metàl•lics. Per tant, l’objectiu d’aquest projecte ésdeterminar el consum energètic en la conformació de materials plàstics en aquest procés.S’estudiarà el consum energètic mesurant l’energia elèctrica necessària per al procés, utilitzantdiferents paràmetres i estratègies de fabricació, com poden ser diferents materialspolimèrics, trajectòries variades de conformat, diferents velocitats d’avanç i rotació i diferentsgeometries.Un cop analitzat el consum energètic derivat de la fabricació amb ISF es valorarà l’impacteambiental que provoca aquesta tecnologia
Resumo:
Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As) to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm) were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydr)oxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.
Resumo:
La natura és sàvia i, després d'anys d'evolució, ha seleccionat materials amb propietats insuperables. Alguns experts creuen que el 80% de les solucions que la ciència busca estan en els animals i les plantes. S'investiga per aconseguir avions inspirats en el vol del cigne, edificis que imitin la termoregulació dels cactus, banyadors basats en les escates dels taurons per reduir la fricció amb l'aigua i materials tan resistents com les teranyines.
Resumo:
Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.
Resumo:
Because of their practical applications, porous materials attract the attention of undergraduate students in a way that can be used to teach techniques and concepts in various chemistry disciplines. Porous materials are studied in various chemistry disciplines, including inorganic, organic, and physical chemistry. In this work, the syntheses of a microporous material and a mesoporous material are presented. The porosity of the synthesized materials is characterized by X-ray diffraction analysis. We show that this technique can be used to determine the pore dimensions of the synthesized materials.
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
Mutansstreptokokkitartunnan ehkäisemisen pitkäaikaisvaikutukset maitohampaiden terveyteen. Kohorttitutkimus korjaavan hoidon määrästä ja kariesehkäisyn kustannuksista. Tutkimuksen tarkoituksena oli selvittää varhaisen mutansstreptokokki (MS)-kolonisaation ehkäisyn pitkäaikaisvaikutuksia korkean kariesriskin omaavien lasten maitohampaistossa sekä tarkastella MS-tartunnan estämisen kustannuksia. Tiedot lasten hampaiden terveydestä ja hammashoitotoimenpiteistä syntymästä 10-vuotiaaksi sekä äiteihin kohdistuneen kariesehkäisyn kustannuksista kerättiin Ylivieskan terveyskeskuksen asiakirjoista. Tutkimuksessa oli mukana yhteensä 507 lasta, heistä 148 oli osallistunut aikaisempaan Ylivieskan äiti-lapsitutkimukseen, jossa verrattiin äitien käyttämän ksylitolipurukumin ja äidille tehtyjen fluori- tai klooriheksidiinilakkausten vaikutusta pikkulasten hampaiden terveyteen. Maitohammaskariesta esiintyi 10-vuotiaaksi asti merkitsevästi vähemmän lapsilla, jotka eivät olleet saaneet MS-tartuntaa alle 2-vuotiaana, heidän maitohampaansa säilyivät 3,4 vuotta kauemmin täysin ehjinä (p<0.001) ja he tarvitsivat vähemmän maitohampaiden korjaavaa hoitoa (p=0.005) kuin lapset, joiden hampaisto oli kolonisoitunut MS-bakteerilla jo 2-vuotiaana. Koska ksylitoliryhmän lasten MS-kolonisaatio oli vähäisintä, heidän maitohampaissaan oli vähemmän kariesta ja korjaavan hoidon tarvetta kuin kahden muun korkeariskisen ryhmän lapsilla. Äitien käyttämän ksylitolipurukumin kustannukset olivat yhteensä 116 euroa ja lapsen maitohampaiden säilyminen täysin ehjinä vuoden pidempään maksoi 37 euroa. Kun MS-tartunta oli saatu estettyä, korkean kariesriskin omaavien lasten hampaiden terveys oli samalla tasolla kuin keskimäärin koko ikäkohortilla. Lapsen maitohampaat säilyvät terveinä pidempään ja korjaavan hoidon tarve vähenee, kun MS-kolonisaatio alle 2-vuotiaana saadaan estettyä. Lapsen MS-kolonisaatio vähenee merkitsevästi, kun äiti käyttää ksylitolipurukumia lapsen ollessa 0-2 vuoden ikäinen, siten pikkulapsen äidin säännöllinen ksylitolipurukumin käyttö saattaa olla julkisen tereydenhuollon kannalta tarkoituksenmukainenterveyttä edistävä menetelmä.
Resumo:
According to the theory of language of the young Benjamin, the primary task of language isn't the communication of contents, but to express itself as a "spiritual essence" in which also men take part. That conception according to which language would be a medium to signification of something outside it leads to a necessary decrease of its original strength and is thus denominated by Benjamin bürgerlich. The names of human language are remainders of an archaic state, in which things weren't yet mute and had their own language. Benjamin suggests also that all the arts remind the original language of things, as they make objects "speak" in form of sounds, colors, shapes etc. That relationship between arts as reminders of the "language of things" and the possible reconciliation of mankind with itself and with nature has been developed by Theodor Adorno in several of his writings, specially in the Aesthetic Theory, where the artwork is ultimately conceived as a construct pervaded by "language" in the widest meaning - not in the "bourgeois" sense.