782 resultados para ACTIVITY LEVELS
Resumo:
Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.
Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.
Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.
Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.
Resumo:
NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.
Resumo:
Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.
Resumo:
There is now a strong body of research that suggests that the form of the built environment can influence levels of physical activity, leading to an increasing interest in incorporating health objectives into spatial planning and regeneration policies and projects. There have been a number of strands to this research, one of which has sought to develop “objective” measurements of the built environment using Geographic Information Science (GIS) involving measures of connectivity and proximity to compare the relative “walkability” of different neighbourhoods. The development of the “walkability index” (e.g. Leslie et al 2007, Frank et al 2010) has become a popular indicator of spatial distribution of those features of the built environment that are considered to have the greatest positive influence on levels of physical activity. The success of this measure is built on its ability to succinctly capture built environment correlates of physical activity using routinely available spatial data, which includes using road centre lines as a basis of a proxy for connectivity.
This paper discusses two key aspects of the walkability index. First, it follows the suggestion of Chin et al (2008) that the use of a footpath network (where available), rather than road centre lines, may be far more effective in evaluating walkability. This may be particularly important for assessing changes in walkability arising from pedestrian-focused infrastructure projects, such as greenways. Second, the paper explores the implication of this for how connectivity can be measured. The paper takes six different measures of connectivity and first analyses the relationships between them and then tests their correlation with actual levels of physical activity of local residents in Belfast, Northern Ireland. The analysis finds that the best measurements appear to be intersection density and metric reach and uses this finding to discuss the implications of this for developing tools that may better support decision-making in spatial planning.
Resumo:
Ischaemic injury impairs the integrity of the blood-brain barrier (BBB). In this study, we investigated the molecular causes of this defect with regard to the putative correlations among NAD(P)H oxidase, plasminogen-plasmin system components, and matrix metalloproteinases. Hence, the activities of NAD(P)H oxidase, matrix metalloproteinase-2, urokinase-type plasminogen activator (uPA), and tissue-type plasminogen activator (tPA), and superoxide anion levels, were assessed in human brain microvascular endothelial cells (HBMECs) exposed to oxygen-glucose deprivation (OGD) alone or OGD followed by reperfusion (OGD + R). The integrity of an in vitro model of BBB comprising HBMECs and astrocytes was studied by measuring transendothelial electrical resistance and the paracellular flux of albumin. OGD with or without reperfusion (OGD ± R) radically perturbed barrier function while concurrently enhancing uPA, tPA and NAD(P)H oxidase activities and superoxide anion release in HBMECs. Pharmacological inactivation of NAD(P)H oxidase attenuated OGD ± R-mediated BBB damage through modulation of matrix metalloproteinase-2 and tPA, but not uPA activity. Overactivation of NAD(P)H oxidase in HBMECs via cDNA electroporation of its p22-phox subunit confirmed the involvement of tPA in oxidase-mediated BBB disruption. Interestingly, blockade of uPA or uPA receptor preserved normal BBB function by neutralizing both NAD(P)H oxidase and matrix metalloproteinase-2 activities. Hence, selective targeting of uPA after ischaemic strokes may protect cerebral barrier integrity and function by concomitantly attenuating basement membrane degradation and oxidative stress.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including cystic fibrosis (CF) however, its detection and quantification in biological samples is confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes, resulting in an over-estimation of the target protease. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel immunoassay (NE-Tag ELISA), incorporating an activity dependent ProteaseTag™ and a specific antibody step, which is selective and specific for the capture of active NE. The objective of this study was to clinically validate NE-Tag ELISA for the detection of active NE in sputum from CF patients. Sputum (n=45) was recovered from CF patients hospitalised for acute exacerbation. Sol was recovered and analysed for NE activity using the NE-Tag ELISA and two fluorogenic substrate-based assays [1. Suc-AAPV-AMC (Sigma) and 2. InnozymeTM Immunocapture assay (Calbiochem)]. NE activity between assays and with a range of clinical parameters was correlated.A highly significant correlation was shown between assays. NE activity (NE-Tag) further correlated appropriately with clinical parameters: inversely with FEV1 (p = 0.036) and positively with CRP (p = 0.035), neutrophils and total white cell counts (p < 0.001). The InnozymeTM assay showed similar correlations with the clinical parameters (with the exception of CRP). No correlations with any of the clinical parameters were observed when NE was measured using the standard fluorogenic substrate.
Resumo:
Purpose:Physical activity is recommended for optimal prevention of cardiovascular disease(CVD) and participation in sport is associated with improved well-being. However, people with long-standing illness/disability are less likely to participate in sport than others. Evidence of factors associated with their participation is limited and the best approach to encourage participation is unknown. This study aimed to identify sport participation levels and their correlates, among adults with long standing illness/disability in Northern Ireland, where CVD prevalence is high. Method:Using routinely collected data in annual surveys of population samples from 2007 to 2011, descriptive statistics were derived. Chi-squared tests were used to compare characteristics of those with a long-term illness/disability and those without long-term health problems. Uni-variate binary regression analysis for the whole sample and those with a long-standing illness/disability, using sport participation as the dependent variable, was performed and variables with a p-value of 0.1 or less were taken into a multi-variate analysis. Results:The sample included 13,683 adults; 3550(26%) reported having long-term illness/disability. Fewer of those with, than without, long-term illness/disability reported sport participation in the previous year (868/3550(24.5%) v 5615/10133(55.6%)). Multi-variate analysis showed that, for those with long-standing illness/disability, being single and less socio-economically deprived correlated positively with sport participation. For both those with long-standing illness/disability and the full sample, sport participation correlated positively with being male, aged <56 years, access to a household car/van, sports club membership, health ‘fairly good’ or ‘good’ in the previous year, doing paid/unpaid work, and living in an urban location. For the full sample but not those with long-standing illness/disability, sport participation correlated positively with being a non-smoker, higher educational status and personal internet access. Of note, personal internet access was less for those with, than without, long-term illness/disability (41% v 70%). Conclusions:Efforts to promote physical activity in sport for those with long-standing illness/disability should target older people, married females, those who live rurally, and those who are socio-economically deprived and report their health as ‘not good’. Implementation of initiatives should not rely on the internet, to which these people may not have ready access, to help support their sport participation and physical activity in optimal CVD prevention.
Resumo:
OBJECTIVE: The efficacy of docetaxel has recently been shown to be increased under hypoxic conditions through the down-regulation of hypoxia-inducible-factor 1α (HIF1A). Overexpression of the hypoxia-responsive gene class III β-tubulin (TUBB3) has been associated with docetaxel resistance in a number of cancer models. We propose that administration of docetaxel to prostate patients has the potential to reduce the hypoxic response through HIF1A down-regulation and that TUBB3 down-regulation participates in sensitivity to docetaxel.
METHODS: The cytotoxic effect of docetaxel was determined in both 22Rv1 and DU145 prostate cancer cell lines and correlated with HIF1A expression levels under aerobic and hypoxic conditions. Hypoxia-induced chemoresistance was investigated in a pair of isogenic docetaxel-resistant PC3 cell lines. Basal and hypoxia-induced TUBB3 gene expression levels were determined and correlated with methylation status at the HIF1A binding site.
RESULTS: Prostate cancer cells were sensitive to docetaxel under both aerobic and hypoxic conditions. Hypoxic cytotoxicity of docetaxel was consistent with a reduction in detected HIF1A levels. Sensitivity correlated with reduced basal and hypoxia-induced HIF1A and TUBB3 expression levels. The TUBB3 HIF1A binding site was hypermethylated in prostate cell lines and tumor specimens, which may exclude transcription factor binding and induction of TUBB3 expression. However, acquired docetaxel resistance was not associated with TUBB3 overexpression.
CONCLUSION: These data suggest that the hypoxic nature of a tumor may have relevance as regard to their response to docetaxel. Further investigation into the nature of this relationship may allow identification of novel targets to improve tumor control in prostate cancer patients.
Resumo:
Ultraviolet B (UVB) light is known to be immunosuppressive, but, probably because of a small UVC component in the emission spectra of some of the UVB lamps used, reports vary on effective dose levels. To prevent potentially lethal graft-versus-host disease (GVHD) after allogeneic bone marrow transplantation, alloreactive donor T-cell activity must be suppressed. In this study, a narrow wavelength UVB lamp (TL01, 312 nm peak emission) was used to determine what doses of UVB were required to abolish rat lymphocyte proliferation while simultaneously preserving rat bone marrow progenitor cell and primitive hematopoietic stem cell viability. Lymphocyte proliferation, as measured by 3H-Thymidine incorporation, in response to lectin stimulation was abolished below detection at doses greater than 3,500 J/m2. When T-cell clonogenicity was measured in a limiting dilution assay, a small fraction (0.6%) was maintained at doses up to 4,000 J/m2. Cytotoxic T-lymphocyte (CTL) activity was reduced after treatment with 4,000 J/m2, but a significant level of cytotoxicity was still maintained. Natural killer cell cytolytic activity was not affected by doses up to 4,000 J/m2. At 4,000 J+m2 there was a 10% survival of colony-forming units-granulocyte-macrophage; a 1% and 4% survival of day-8 and day-12 colony-forming units-spleen, respectively; and 11% survival of marrow repopulating ability cells. Up to 25% of late cobblestone area forming cells (4 to 5 weeks), reflecting the more immature hematopoietic stem cells, were preserved in bone marrow treated with 4,000 J/m2, indicating that early stem cells are less sensitive to UVB damage than are more committed progenitor cells. Thus, a potential therapeutic window was established at approximately 4,000 J/m2 using this light source, whereby the potentially GVHD-inducing T cells were suppressed, but a sufficient proportion of the cells responsible for engraftment was maintained.
Resumo:
Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.
Resumo:
Introduction: Neutrophil elastase (NE) is a serine protease implicated in the pathogenesis of several respiratory diseases including cystic fibrosis (CF). The presence of free NE in BAL is a predictor of subsequent bronchiectasis in children with CF (Sly et al, 2013, NEJM 368: 1963-1970). Furthermore, children with higher levels of sputum NE activity (NEa) tend to experience a more rapid decline in FEV1 over time even after adjusting for age, gender and baseline FEV1 (Sagel et al, 2012, AJRCCM 186: 857-865). Its detection and quantification in biological samples is however confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel assay (ProteaseTag™ Active NE Immunoassay), which couples an activity dependent NE-Tag with a specific antibody step, resulting in an assay which is both selective and specific for NEa. Aims: To clinically validate ProteaseTag™ Active NE for the detection of free NEa in BAL from children with CF. Methods: A total of 95 paediatric BAL samples [CF (n=76; 44M, 32F) non-CF (n=19; 12M, 7F)] collected through the Study of Host Immunity and Early Lung Disease in CF (SHIELD CF) were analysed for NEa using ProteaseTag™ Active NE (ProAxsis Ltd) and a fluorogenic substrate-based assay utilising Suc-AAPV-AMC (Sigma). IL-8 was measured by ELISA (R&D Systems). Results were analysed to show comparisons in free NEa between CF and non-CF samples alongside correlations with a range of clinical parameters. Results: NEa measured by ProteaseTag™ Active NE correlated significantly with age (r=0.3, p=0.01) and highly significantly with both IL-8 (r=0.4, p=<0.0001) and the absolute neutrophil count (ANC) (r=0.4, p=<0.0001). These correlations were not observed when NEa was measured by the substrate assay even though a significant correlation was found between the two assays (r=0.8, p<0.0001). A trend towards significance was found between NEa in the CF and non-CF groups when measured by ProteaseTag™ Active NE (p=0.07). Highly significant differences were found with the other inflammatory parameters between the 2 groups (IL-8: p=0.0002 and ANC: p=0.006). Conclusion: NEa as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE has been shown to be a specific and superior tool in the measurement of NEa in paediatric CF BAL samples (supporting data from previous studies using adult CF expectorated samples). The technology is currently being transferred to a lateral flow device for use at Point of Care. Acknowledgements: This work was supported by the National Children’s Research Centre, Dublin (SHIELD CF) and grants from the Medical Research Council and Cystic Fibrosis Foundation Therapeutics.
Resumo:
HOX genes are master regulators of organ morphogenesis and cell differentiation during embryonic development, and continue to be expressed throughout post-natal life. To test the hypothesis that HOX genes are dysregulated in head and neck squamous cell carcinoma (HNSCC) we defined their expression profile, and investigated the function, transcriptional regulation and clinical relevance of a subset of highly expressed HOXD genes. Two HOXD genes, D10 and D11, showed strikingly high levels in HNSCC cell lines, patient tumor samples and publicly available datasets. Knockdown of HOXD10 in HNSCC cells caused decreased proliferation and invasion, whereas knockdown of HOXD11 reduced only invasion. POU2F1 consensus sequences were identified in the 5' DNA of HOXD10 and D11. Knockdown of POU2F1 significantly reduced expression of HOXD10 and D11 and inhibited HNSCC proliferation. Luciferase reporter constructs of the HOXD10 and D11 promoters confirmed that POU2F1 consensus binding sites are required for optimal promoter activity. Utilizing patient tumor samples a significant association was found between immunohistochemical staining of HOXD10 and both the overall and the disease-specific survival, adding further support that HOXD10 is dysregulated in head and neck cancer. Additional studies are now warranted to fully evaluate HOXD10 as a prognostic tool in head and neck cancers.
Resumo:
Introduction: Protease activity is essential for the progression of periodontal disease and several studies have shown that gingival crevicular fluid (GCF) proteases are associated with the attachment loss and bone destruction associated with periodontial disease. In addition to measuring protease levels using ELISA, it is also important to consider enzyme activity which can be measured using appropriate substrates. Aim: The aim of this work was to measure the proteolyitc activity in gingival crevicular fluid (GCF) from periodontitis patients using zymography and a fluorogenic protease substrate. Materials and Methods: Twenty four GCF samples were collected from patients with established periodontitis who had not received any periodontal treatment in the previous six months. A strip of perio-paper was inserted into the gingival crevice until light resistance was felt. After 30 seconds the perio-paper was removed and placed into 500 ul ice cold 0.01M sodium phosphate buffer, pH 7.2, containing 0.15M sodium chloride, vortex mixed for 30 seconds and stored at -80°C until required. GCF samples (10 ul) were electrophoresed on 4-16% Blue casein zymogram gels at 125V constant voltage for 90 min. Following electrophoresis the gel was washed in renaturation buffer for 30 min and then placed in developing buffer overnight. Areas of protease activity appeared as clear bands against a blue background. The total caseinolytic activity of each GCF sample was measured using a fluorescent assay with resorufin-labelled casein as the substrate. Results: The results showed that both casein zymography and fluorogenic assay methods were suitable for analysing caseinolytic activity in GCF samples from periodontitis patients. Caseinolytic activity was variable in the periodontitis samples studied and may reflect the episodic nature of the disease. Conclusion: Casein zymography and fluorogenic assay methods may be useful in future attempts to measure active episodes of periodontal disease.
Resumo:
β-Site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of Aβ peptides, proposed to drive the pathological changes found in Alzheimer’s disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (β-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulated BACE1 gene expression in a cell-based assay. This study aimed to analyze RTN3 and PPIL2 mRNA levels in four brain regions from individuals with AD and controls. BACE1 mRNA had been previously quantified in the samples, as had glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), to track changing cell populations in the tissue. mRNA levels in the human post mortem brain tissue were assayed using quantitative real-time polymerase chain reaction (qPCR) and qbasePLUS, employing validated stably expressed reference genes. No differences in RTN3 or PPIL2 mRNA levels were found in individuals with AD, compared to controls. Both RTN3 and PPIL2 mRNA levels correlated significantly with BACE1 mRNA and all three showed similar disease stage-dependent changes with respect to NSE and GFAP. These findings indicated that the in vitro data demonstrating an effect of PPIL2 on BACE1 expression have functional relevance in vivo. Further research into BACE1-interacting proteins could provide a fruitful approach to the modulation of this protease and consequently Aβ production.
Resumo:
Epithelial tissues are essential during morphogenesis and organogenesis. During development, epithelial tissues undergo several different remodeling processes, from cell intercalation to cell change shape. An epithelial cell has a highly polarized structure, which is important to maintain tissue integrity. The mechanisms that regulate and maintain apicobasal polarity and epithelial integrity are mostly conserved among all species and in different tissues within the same organism. aPKC-PAR complex localizes in the apical domain of polarized cells, and its function is essential for apicobasal polarization and epithelial integrity. In this work we characterized two novel alleles of aPKC: a temperature sensitive allele (aPKCTS), which has a point mutation on a kinase domain, and another allele with a point mutation on a highly conserved amino acid within the PB1 domain of aPKC (aPKCPB1). Analysis of the aPKCTS mutant phenotypes, lead us to propose that during development different epithelial tissues have differential requirements of aPKC activity. More specifically, our work suggests de novo formation of adherens junctions (AJs) is particularly sensitive to sub-optimal levels of apkc activity. Analysis of the aPKCPB1 allele, suggests that aPKC is likely to have an apical structural function mostly independent of its kinase activity. Altogether our work suggests that although loss of aPKC function is associated to similar epithelial phenotypes (e.g., loss of apicobasal polarization and epithelial integrity), the requirements of aPKC activity within these tissues are nevertheless likely to vary.