809 resultados para 9,12-Hexadecadienoic acid of total fatty acids
Resumo:
pt. 1
Resumo:
pt. 3
Resumo:
The ligand-controlled retinoic acid (RA) receptors and retinoid X receptors are important for several physiological processes, including normal embryonic development, but little is known about how their ligands, all-trans and 9-cis RA, are generated. Here we report the identification of a stereo-specific 9-cis retinol dehydrogenase, which is abundantly expressed in embryonic tissues known to be targets in the retinoid signaling pathway. The membrane-bound enzyme is a member of the short-chain alcohol dehydrogenase/reductase superfamily, able to oxidize 9-cis retinol into 9-cis retinaldehyde, an intermediate in 9-cis RA biosynthesis. Analysis by nonradioactive in situ hybridization in mouse embryos shows that expression of the enzyme is temporally and spatially well controlled during embryogenesis with prominent expression in parts of the developing central nervous system, sensory organs, somites and myotomes, and several tissues of endodermal origin. The identification of this enzyme reveals a pathway in RA biosynthesis, where 9-cis retinol is generated for subsequent oxidation to 9-cis RA.
Resumo:
The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 → Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 → Ala or Phe13 → Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.
Resumo:
Deletion of the yeast gene ACB1 encoding Acb1p, the yeast homologue of the acyl-CoA-binding protein (ACBP), resulted in a slower growing phenotype that adapted into a faster growing phenotype with a frequency >1:105. A conditional knockout strain (Y700pGAL1-ACB1) with the ACB1 gene under control of the GAL1 promoter exhibited an altered acyl-CoA profile with a threefold increase in the relative content of C18:0-CoA, without affecting total acyl-CoA level as previously reported for an adapted acb1Δ strain. Depletion of Acb1p did not affect the general phospholipid pattern, the rate of phospholipid synthesis, or the turnover of individual phospholipid classes, indicating that Acb1p is not required for general glycerolipid synthesis. In contrast, cells depleted for Acb1p showed a dramatically reduced content of C26:0 in total fatty acids and the sphingolipid synthesis was reduced by 50–70%. The reduced incorporation of [3H]myo-inositol into sphingolipids was due to a reduced incorporation into inositol-phosphoceramide and mannose-inositol-phosphoceramide only, a pattern that is characteristic for cells with aberrant endoplasmic reticulum to Golgi transport. The plasma membrane of the Acb1p-depleted strain contained increased levels of inositol-phosphoceramide and mannose-inositol-phosphoceramide and lysophospholipids. Acb1p-depleted cells accumulated 50- to 60-nm vesicles and autophagocytotic like bodies and showed strongly perturbed plasma membrane structures. The present results strongly suggest that Acb1p plays an important role in fatty acid elongation and membrane assembly and organization.
Resumo:
The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants.