968 resultados para 5-HT(1A) receptors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A limited set of novel octreotide dicarba-analogues with non-native aromatic side chains in positions 7 and/or 10 were synthesized. Their affinity toward the ssts1-5 was determined. Derivative 4 exhibited a pan-somatostatin activity, except sst4, and derivative 8 exhibited high affinity and selectivity toward sst5. Actually, compound 8 has similar sst5 affinity (IC50 4.9 nM) to SRIF-28 and octreotide. Structure-activity relationships suggest that the Z geometry of the double-bond bridge is that preferred by the receptors. The NMR study on the conformations of these compounds in SDS(-d25) micelles solution shows that all these analogues have the pharmacophore beta-turn spanning Xaa7-D-Trp8-Lys9-Yaa10 residues. Notably, the correlation between conformation families and affinity data strongly indicates that the sst5 selectivity is favored by a helical conformation involving the C-terminus triad, while a pan-SRIF mimic activity is based mainly on a conformational equilibrium between extended and folded conformational states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

delta subunit-containing gamma-aminobutyric acid, type A (GABA(A))receptors are expressed extrasynaptically and mediate tonic inhibition. In cerebellar granule cells, they often form receptors together with alpha(1) and/or alpha(6) subunits. We were interested in determining the architecture of receptors containing both subunits. We predefined the subunit arrangement of several different GABA(A) receptor pentamers by concatenation. These receptors composed of alpha(1), alpha(6), beta(3), and delta subunits were expressed in Xenopus oocytes. Currents elicited in response to GABA were determined in the presence and absence of 3alpha,21-dihydroxy-5alpha-pregnan-20-one (THDOC) or ethanol, or currents were elicited by 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP). Several subunit configurations formed active channels. We therefore conclude that delta can assume multiple positions in a receptor pentamer made up of alpha(1), alpha(6), beta(3), and delta subunits. The different receptors differ in their functional properties. Functional expression of one receptor type was only evident in the combined presence of the neurosteroid THDOC with the channel agonist GABA. Most, but not all, receptors active with GABA/THDOC responded to THIP. None of the receptors was modulated by ethanol concentrations up to 30 mm. Several observations point to a preferred position of delta subunits between two alpha subunits in alpha(1)alpha(6)beta(3)delta receptors. This property is shared by alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors, but there are differences in the additionally expressed isoforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disturbances in melatonin - the neurohormone that signals environmental darkness as part of the circadian circuit of mammals - have been implicated in various psychopathologies in humans. At present, experimental evidence linking prenatal melatonin signaling to adult physiology, behavior, and gene expression is lacking. We hypothesized that administration of melatonin (5 mg/kg) or the melatonin receptor antagonist luzindole (5 mg/kg) to rats in utero would permanently alter the circadian circuit to produce differential growth, adult behavior, and hippocampal gene expressionin the male rat. Prenatal treatment was found to increase growth in melatonin-treated animals. In addition, subjects exposed to melatonin prenatally displayed increased rearing in the open field test and an increased right turn preference in the elevated plusmaze. Rats administered luzindole prenatally, however, displayed greater freezing and grooming behavior in the open field test and improved learning in the Morris water maze. Analysis of relative adult hippocampal gene expression with RT-PCR revealed increasedexpression of brain-derived neurotrophic factor (BDNF) with a trend toward increased expression of melatonin 1A (MEL1A) receptors in melatonin-exposed animals whereas overall prenatal treatment had a significant effect on microtubule-associated protein 2(MAP2) expression. Our data support the conclusion that the manipulation of maternal melatonin levels alters brain development and leads to physiological and behavioral abnormalities in adult offspring. We designate the term circadioneuroendocrine (CNE)axis and propose the CNE-axis hypothesis of psychopathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GABA(A) receptors are the major ionotropic inhibitory neurotransmitter receptors. The endocannabinoid system is a lipid signaling network that modulates different brain functions. Here we show a direct molecular interaction between the two systems. The endocannabinoid 2-arachidonoyl glycerol (2-AG) potentiates GABA(A) receptors at low concentrations of GABA. Two residues of the receptor located in the transmembrane segment M4 of β(2) confer 2-AG binding. 2-AG acts in a superadditive fashion with the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) and modulates δ-subunit-containing receptors, known to be located extrasynaptically and to respond to neurosteroids. 2-AG inhibits motility in CB(1)/CB(2) cannabinoid receptor double-KO, whereas β(2)-KO mice show hypermotility. The identification of a functional binding site for 2-AG in the GABA(A) receptor may have far-reaching consequences for the study of locomotion and sedation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptors recognize pathogen-associated molecular patterns of microbial origin, and ligand recognition results in the production of different immune mediators such as pro-inflammatory cytokines, interferon, reactive oxygen and nitrogen intermediates, and upregulation of costimmulatory molecules. As these receptors have a critical role in linking pathogen recognition to induction of inflammation and innate as well as adaptive immunity, there is tremendous interest in understanding how the tissue and cell-type expression of TLRs is regulated and its influence on the local innate immune response. While TLRs are well studied in humans and rodents, to date little is known about them in dogs. The purpose of this study was to develop canine specific antibodies against TLR2, 4, 5 and 9 that were used to measure relative expression of these TLRs in healthy and reactive canine mesenteric lymph nodes. All 8 rabbit sera (2 each for TLR2, 4, 5 and 9) were strongly positive in ELISA against the respective 2 peptides per TLR used for immunization. The purified antibodies selected specifically detected a protein band with an apparent size of approximately 70 kDa in lysates of canine PBMCs by Western blotting. Immunostaining was observed with purified antibodies against TLR4, 5 and 9, whereas for canine TLR2, staining was only observed with the unpurified antibodies. In the mesenteric lymph node of healthy dogs, the overall staining pattern was very similar for TLR4 and 5 with positive cells predominantly found in the internodular areas and lower part of the cortex. Compared to the TLR4 and 5, more cells stained positive for TLR9 especially in the lymphoid nodules. The reactive lymph nodes contained more TLR4 and 9 positive cells. Moreover, a shift of TLR-9 positive cells from the lymphoid follicles to the deep cortex and medullary cords was observed. Whereas TLR9 co-localized with CD79-positive areas, TLR4 and 5 antibodies stained cells primarily in the CD3-positive areas. All three TLR antibodies stained cells within the area that co-localized with lysozyme-positive cells. In conclusion, this study demonstrates that the antibodies generated against canine TLR 4, 5 and 9 identify the expression of these TLRs in formalin-fixed canine lymph nodes and demonstrate increased expression in reactive canine mesenteric lymph nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the distribution of mRNA coding for 7 subtypes of 5-hydroxytryptamine receptors (5-HTRs) in the intestines of healthy dairy cows and dairy cows with cecal dilatation-dislocation (CDD). SAMPLE POPULATION: Full-thickness intestinal wall biopsy specimens were obtained from the ileum, cecum, proximal loop of the ascending colon, and external loop of the spiral colon (ELSC) of 15 cows with CDD (group 1) and 15 healthy dairy cows allocated to 2 control groups (specimens collected during routine laparotomy [group 2] or after cows were slaughtered [group 3]). PROCEDURE: Amounts of mRNA coding for 7 subtypes of 5-HTRs (5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT4) were measured by quantitative real-time reverse transcriptase-PCR assay. Results were expressed as the percentage of mRNA expression of a housekeeping gene. RESULTS: Expression of mRNA coding for 5-HTR1B, 5-HTR2B, and 5-HTR4 was significantly lower in cows with CDD than in healthy cows. For 5-HTR2B and 5-HTR4, significant differences between cows with CDD and control cows were most pronounced for the ELSC. Expression of mRNA for 5-HTR1D, 5-HTR1F, and 5-HTR2A was extremely low in all groups, and mRNA for 5-HTR1A was not detected. CONCLUSIONS AND CLINICAL RELEVANCE: Relative concentrations of mRNA coding for 5-HTR1B, 5-HT2B, and 5-HTR4 were significantly lower in the intestines of cows with CDD than in the intestines of healthy dairy cows, especially for 5-HT2B and 5-HTR4 in the ELSC. This supports the hypothesis that serotonergic mechanisms, primarily in the spiral colon, are implicated in the pathogenesis of CDD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After birth the development of appropriate detoxification mechanisms is important. Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor-alpha (PPARalpha), retinoid receptors (RAR, RXR), and NR target genes are involved in the detoxification of exogenous and endogenous substances. We quantified abundances of hepatic mRNA of NR and several NR target genes (cytochromes, CYP; cytochrome P450 reductase, CPR; UDP-glucuronosyl transferase, UDP) in calves at different ages. Gene expression was quantified by real-time RT-PCR. Abundance of mRNA of CAR and PXR increased from low levels at birth in pre-term calves (P0) and full-term calves (F0) to higher levels in 5-day-old calves (F5) and in 159-day-old veal calves (F159), whereas mRNA levels of PPARalpha did not exhibit significant ontogenetic changes. RARbeta mRNA levels were higher in F5 and F159 than in F0, whereas no age differences were observed for RARalpha levels. Levels of RXRalpha and RXRbeta mRNA were lower in F5 than in P0 and F0. Abundance of CYP2C8 and CYP3A4 increased from low levels in P0 and F0 to higher levels in F5 and to highest levels in F159. Abundance of CPR was transiently decreased in F0 and F5 calves. Levels of UGT1A1 mRNA increased from low levels in P0 and F0 to maximal level in F5 and F159. In conclusion, mRNA levels of NR and NR target genes exhibited ontogenetic changes that are likely of importance for handling of xeno- and endobiotics with increasing age.