985 resultados para 346.023
Resumo:
Clinical use of the imidazoquinoline immunomodulator imiquimod for the topical treatment of dysplastic and neoplastic lesions has increased markedly in recent years. However, despite guidance from the manufacturer of the proprietary imiquimod cream, there seems to be little consensus between clinicians as to the topically applied dose. Given that patients often apply the cream themselves at home, further dosing variability is expected and, consequently, accurate comparison of the results of different published studies is dif?cult. This paper describes, for the ?rst time, the formulation and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod as well as a new HPLC method for sensitive ?uorescence determination of imiquimod released from such systems. Patches containing imiquimod loadings of 4.75, 9.50 and 12.50 mg cm-2 all released signi?cantly more drug across a model membrane than the proprietary cream over a period of 6 h. Inclusion of imiquimod in patches did not adversely affect their physicochemical properties. Of major importance, patches contained de?ned drug loadings per unit area; therefore, their use could reduce inter-clinician variability. This would make critical comparison of clinical studies and determination of an appropriate imiquimod dose for successful treatment much simpler. Since bioadhesive formulations are capable of adhering to body tissues in moist environments, the use of a bioadhesive patch system may allow extension of the clinical uses of imiquimod to the treatment of neoplastic conditions of the oral cavity and cervix, as well as the vulva. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Background & Aims: Wide between-center variation in adenoma detection rates (ADRs) was observed in the U.K. Flexible Sigmoidoscopy Screening Trial (overall, 12.1%; range, 8.6%-15.9%; P <0.0001). The aim of this study was to determine whether the observed differences could be attributed to varying performance by endoscopists, to examine the effect of experience on performance, and to identify an attainable, standard ADR to which endoscopists could aspire.
Methods: Thirteen medical endoscopists, one per trial center, each performed about 3000 examinations (200 per month) using the same equipment and protocol. Overall and monthly ADRs were compared using multivariable logistic regression.
Results: Differences in ADRs were not explained by patient characteristics, incidence of colorectal cancer in the local population, or the endoscopists' medical specialty or previous experience. Average ADRs increased significantly with screening experience (up to 400 examinations). Endoscopists were classified as higher, intermediate, or lower adenoma detectors, and performance levels were maintained over time. Higher detectors had ADRs of 15% overall (men, 20%; women, 10%) and also detected more adenomas per case (higher/lower detectors, 21.7/10.4 adenomas per :100 examinations).
Conclusions: The differences in ADRs were due to variation in performance of the endoscopists. Long-term follow-up will determine whether this variation is clinically important. We suggest that the standards in higher detecting centers should be achievable by all endoscopists screening unscreened populations aged older than 55 years. Endoscopists should aim to stay above the lower 95% confidence interval band for 200 examinations (10% overall; 5% in women, 15% in men).
Resumo:
Self-compacting concrete (SCC) is generally designed with a relatively higher content of finer, which includes cement, and dosage of superplasticizer than the conventional concrete. The design of the current SCC leads to high compressive strength, which is already used in special applications, where the high cost of materials can be tolerated. Using SCC, which eliminates the need for vibration, leads to increased speed of casting and thus reduces labour requirement, energy consumption, construction time, and cost of equipment. In order to obtain and gain maximum benefit from SCC it has to be used for wider applications. The cost of materials will be decreased by reducing the cement content and using a minimum amount of admixtures. This paper reviews statistical models obtained from a factorial design which was carried out to determine the influence of four key parameters on filling ability, passing ability, segregation and compressive strength. These parameters are important for the successful development of medium strength self-compacting concrete (MS-SCC). The parameters considered in the study were the contents of cement and pulverised fuel ash (PFA), water-to-powder ratio (W/P), and dosage of superplasticizer (SP). The responses of the derived statistical models are slump flow, fluidity loss, rheological parameters, Orimet time, V-funnel time, L-box, JRing combined to Orimet, JRing combined to cone, fresh segregation, and compressive strength at 7, 28 and 90 days. The models are valid for mixes made with 0.38 to 0.72 W/P ratio, 60 to 216 kg/m3 of cement content, 183 to 317 kg/m3 of PFA and 0 to 1% of SP, by mass of powder. The utility of such models to optimize concrete mixes to achieve good balance between filling ability, passing ability, segregation, compressive strength, and cost is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mix parameters on slump flow, loss of fluidity, flow resistance, segregation, JRing combined to Orimet, and compressive strength at 7 and 28 days. Cost analysis is carried out to show trade-offs between cost of materials and specified consistency levels and compressive strength at 7 and 28 days that can be used to identify economic mixes. The paper establishes the usefulness of the mathematical models as a tool to facilitate the test protocol required to optimise medium strength SCC.