974 resultados para 270100 Biochemistry and Cell Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major beta-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an encloglucanase that hydrolyzes beta-1,3-glucans as laminarin and yeast beta-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched beta-1,3-glucans or mixed beta-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A importância do estudo dos valores hematológicos, de bioquímica sérica e urinários de Cachorro-do-mato (Cerdocyon thous) baseia-se na necessidade de cuidados e manutenção da sanidade destas populações. Este estudo visou investigar os parâmetros fisiológicos hematológicos, de bioquímica sérica e urinários dos Cachorros-do-mato de cativeiro, comparando as possíveis diferenças sexuais e de faixa etária. Foram colhidas amostras de sangue de 52 animais, pertencentes a diversos Zoológicos do Estado de São Paulo, Brasil. Foram colhidos cerca de 7mL de sangue, que foram utilizados para se obter os valores hematológicos e o perfil de bioquímica sérica. Também foram colhidos 5mL de urina para realização da urinálise. Não se encontraram diferenças entre os valores obtidos para machos e fêmeas tanto na hematologia, quanto na bioquímica sérica. Alguns parâmetros hematológicos e de bioquímica sérica foram afetados pela idade, mostrando diferenças significativas. Os resultados da urinálise foram demonstrados apenas em forma descritiva. Os principais valores encontrados foram, hemácias 4,35+0,73 x 106 células /µL, leucócitos totais 7,72+3,66 x 103 células /µL (predomínio de neutrófilos segmentados), plaquetas 227,06+111,58 x 103 células /µL, ureia 43,06+14,28mg/dL e creatinina 1,03+0,24mg/dL. Os valores hematológicos, de bioquímica sérica e urinários obtidos neste estudo podem ser utilizados como valores fisiológicos de Cachorros-do-mato de cativeiro. Pode-se concluir que as espécies silvestres necessitam de seus próprios valores de referência com necessidade de se diferenciar animais em cativeiro de animais de vida livre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspartic protease (EC 3.4.23) make up a widely distributed class of enzymes in animals, plants, microbes and, viruses. In animals these enzymes perform diverse functions, which range from digestion of food proteins to very specific regulatory roles. In contrast the information about the well-characterized aspartic proteases, very little is known about the corresponding enzyme in urine. A new aspartic protease isolated from human urine has been crystallized and X-ray diffraction data collected to 2.45 Angstrom resolution using a synchrotron radiation source. Crystals belong to the space group P2(1)2(1)2(1) the cell parameters obtained were a=50.99, b=75.56 and c=89.90 Angstrom. Preliminary analysis revealed the presence of one molecule in the asymmetric unit. The structure was determined using the molecular replacement technique and is currently being refined using simulated annealing and conjugate gradient protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MCF-7 (estrogen receptor positive - ER(+)) and MDA-MB-231 (estrogen receptor negative - ER(-)) are human breast cancer cell lines which express functional thyroid hormone receptors (c-erb A alpha 1 and c-erb beta 1) as indicated by stimulation of mitochondrial alpha-glycerophosphate dehydrogenase. In MCF-7, mimicking E(2), T-3 stimulated growth in a dose-dependent (10(10) M-10(-8) M) manner, induced the expression of progesterone receptor and growth factor TGF alpha mRNAs and inhibited that of TGF beta mRNA; T-3 also increased progesterone binding and LDH5 isozyme activities. None of these effects were observed in (ER(-)) MDA-MB-231 cells. 10(-6) M tamoxifen (TAM) reverted growth stimulation, suppressed progesterone receptor and TGF alpha mRNA induction and restored TGF beta mRNA to control levels in T-3-treated MCF-7 cells. That T-3 is acting in MCF-7 cells via its binding to ER is suggested by the immunoprecipitation of pre-bound I-125-T-3 from MCF-7 nuclear extracts by an ER-specific monoclonal antibody and by the displacement of H-3-estradiol binding to ER by radioinert T-3. Copyright (C) 1996 Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pericardial tissue has been used to construct bioprostheses employed in the repair of different kinds of injuries, mostly cardiac. However, calcification and mechanical failure have been the main causes of the limited durability of cardiac bioprostheses constructed with bovine pericardium. In the course of this work, a study was conducted on porcine fibrous pericardium, its microscopic structure and biochemical nature. The general morphology and architecture of collagen were studied under conventional light and polarized light microscopy. The biochemical study of the pericardial matrix was conducted according to the following procedures: swelling test, hydroxyproline and collagen dosage, quantification of amino acids in soluble collagen, component extraction of the extracellular matrix of the right and left ventral regions of pericardium with different molarities of guanidine chloride, protein and glycosaminoglycan (GAG) dosage, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and total GAG analysis. Microscopic analysis showed collagen fibers arranged in multidirectionally oriented layers forming a closely knit web, with a larger number of fibers obliquely oriented, initiating at the lower central region toward the upper left lateral relative to the heart. No qualitative differences were found between proteins extracted from the right and left regions. Likewise, no differences were found between fresh and frozen material. Protein dosages from left frontal and right frontal pericardium regions showed no significant differences. The quantities of extracted GAGs were too small for detection by the method used. Enzymatic digestion and electrophoretic analysis showed that the GAG found is possibly dermatan sulfate. The proteoglycan showed a running standard very similar to the small proteoglycan decorin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we compared six different solubilization buffers and optimized two-dimensional electrophoresis (2-DE) conditions for human lymph node proteins. In addition, we developed a simple protocol for 2-D gel storage. Efficient solubilization was obtained with lysis buffers containing (a) 8 M urea, 4% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), 40 mM Tris base, 65 mM DTT (dithiothreitol) and 0.2% carrier ampholytes; (b) 5 M urea, 2 M thiourea, 2% CHAPS, 2% SB 3-10 (N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate), 40 mM Tris base, 65 mM DTT and 0.2% carrier ampholytes or (c) 7 M urea, 2 M thiourea, 4% CHAPS, 65 mM DTT and 0.2% carrier ampholytes. The optimal protocol for isoelectric focusing (IEF) was accumulated voltage of 16,500 Vh and 0.6% DTT in the rehydration solution. In the experiments conducted for the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), best results were obtained with a doubled concentration (50 mM Tris, 384 mM glycine, 0.2% SDS) of the SDS electrophoresis buffer in the cathodic reservoir as compared to the concentration in the anodic reservoir (25 mM Tris, 192 mM glycine, 0.1% SDS). Among the five protocols tested for gel storing, success was attained when the gels were stored in plastic bags with 50% glycerol. This is the first report describing the successful solubilization and 2D-electrophoresis of proteins from human lymph node tissue and a 2-D gel storage protocol for easy gel handling before mass spectrometry (MS) analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the students' preferred teaching techniques, such as traditional blackboard, power-point, or slide-projection, for biochemistry discipline in biomedicine and medicine courses from São Paulo State University, UNESP, Botucatu, São Paulo, Brazil. Preferences for specific topic and teaching techniques were determined from questionnaires on a Liquert scale from 1 to 5 (strongly disagree; disagree; neither agree, nor disagree; agree; strongly agree) distributed at the end of biochemistry discipline to 180 biomedical students (30 students/year) and 540 medical students (90 students/year), during the years 2000-2005. Despite of the different number of hours applied to the course topics for the two groups of students, the majority of undergraduates from biomedicine and medicine preferred metabolic topics. Although the perception of a medical student is expected to be different than that of a biomedical student, as the aims of the two programs are different, 92.4% of students from each course agreed or strongly agreed with the biochemistry topics, and 92.1% thought highly on this subject. The majority of students, a number of 139 undergraduates from biomedicine and 419 from medicine course, preferred traditional blackboard teaching than slide-projection, or power-point class. In conclusion, it is imperative that the health courses reflect on sophisticated technology and data presentation with high density of information in biochemistry discipline. The traditional classes with blackboard presentation were most favored by students from biomedicine and medicine courses. The use of students' preferred teaching techniques might turn biochemistry more easily understood for biomedical and medical students. © 2007 by The International Union of Biochemistry and Molecular Biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A century after the discovery of Chagas disease, it is still one of the most important parasitic diseases affecting humans. The subfamily Triatominae is important in medical health, because these insects are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. These insects are also of important cytological relevance because they have particular cell characteristics, such as persistence of nucleolar material in spermatogenesis. The germ cells of the animal kingdom have chromatoid bodies (CBs) in their cytoplasm that can originate from nucleolar material that is fragmented in the early stages of spermatogenesis and plays an important role in cellular communication between the spermatids during spermiogenesis. Currently, there are few studies on the function and formation of the CB in nucleologenesis, especially with emphasis on the ultrastructure of the cells involved in spermatogenesis of insects. Considering the importance of knowledge about the triatomine fauna, we conducted a study of the biogeography and reports of these insects and a survey of patients with Chagas disease in the northwestern region of São Paulo State. Data collected from 1995 to 2009 indicated 700 individuals with Chagas disease, demonstrating a range of 0 to 40 years, which shows that the disease may be active in this region. Moreover, of the 1150 patients treated for cardiomyopathy, 44% were chagasic. Regarding the triatomines noted and captured in the period from 2004 to 2009, the species were Triatoma sordida and Rhodnius neglectus, with T. sordida being the most abundant. In addition, some triatomines were infected by T. cruzi in various developmental stages. We also analyzed the nucleolar cycle and fibrillarin nucleolar protein expression in CB of spermatogenic cells of T. infestans and T. sordida, using histological, ultrastructural and immunocytochemical techniques. The results revealed fibrillarin nucleolar protein expression in the nucleus and in some cytoplasmic spots of germ cells during spermatogenesis in triatomines. These data suggest that fibrillarin could be a constituent of CB, which was most likely derived from nucleolar fragmentation. This is the first time that fibrillarin protein expression has been shown in CB during spermatogenesis progression in triatomines. Knowledge about the biology of triatomines was deepened in this study and, in particular, the structural and ultrastructural aspects of spermatogenesis in triatomines. This study showed that the disease may be active in the northwestern region of São Paulo and expanded our knowledge of the biology of triatomines, the main vectors of Chagas disease. © FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many cell types have no known functional attributes. In the bladder and prostate, basal epithelial and stromal cells appear similar in cytomorphology and share several cell surface markers. Their total gene expression (transcriptome) should provide a clear measure of the extent to which they are alike functionally. Since urologic stromal cells are known to mediate organ-specific tissue formation, these cells in cancers might exhibit aberrant gene expression affecting their function. For transcriptomes, cluster designation (CD) antigens have been identified for cell sorting. The sorted cell populations can be analyzed by DNA microarrays. Various bladder cell types have unique complements of CD molecules. CD9(+) urothelial, CD104(+) basal and CD13(+) stromal cells of the lamina propria were therefore analyzed, as were CD9(+) cancer and CD13(+) cancer-associated stromal cells. The transcriptome datasets were compared by principal components analysis for relatedness between cell types; those with similarity in gene expression indicated similar function. Although bladder and prostate basal cells shared CD markers such as CD104, CD44 and CD49f, they differed in overall gene expression. Basal cells also lacked stem cell gene expression. The bladder luminal and stromal transcriptomes were distinct from their prostate counterparts. In bladder cancer, not only the urothelial but also the stromal cells showed gene expression alteration. The cancer process in both might thus involve defective stromal signaling. These cell-type transcriptomes provide a means to monitor in vitro models in which various CD-isolated cell types can be combined to study bladder differentiation and bladder tumor development based on cell-cell interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The in vitro production (IVP) of embryos by in vitro fertilization or cloning procedures has been known to cause epigenetic changes in the conceptus that in turn are associated with abnormalities in pre- and postnatal development. Handmade cloning (HMC) procedures and the culture of zona-free embryos in individual microwells provide excellent tools for studies in developmental biology, since embryo development and cell allocation patterns can be evaluated under a wide range of embryo reconstruction arrangements and in in vitro embryo culture conditions. As disturbances in embryonic cell allocation after in vitro embryo manipulations and unusual in vivo conditions during the first third of pregnancy appear to be associated with large offspring, embryo aggregation procedures may allow a compensation for epigenetic defects between aggregated embryos or even may influence more favorable cell allocation in embryonic lineages, favoring subsequent development. Thus, the aim of this study was to evaluate in vitro embryo developmental potential and the pattern of cell allocation in blastocysts developed after the aggregation of handmade cloned embryos produced using syngeneic wild type and/or transgenic somatic cells. Materials, Methods & Results: In vitro-matured bovine cumulus-oocyte complexes (COC) were manually bisected after cumulus and zona pellucida removal; then, two enucleated hemi-oocytes were paired and fused with either a wild type (WT) or a GFP-expressing (GFP) fetal skin cell at the 11th and 19th passages, respectively. Following chemical activation, reconstructed cloned embryos and zona-free parthenote embryos were in vitro-cultured in microwells, for 7 days, either individually (1 x 100%) or after the aggregation of two structures (2 x 100%) per microwell, as follows: (G1) one WT cloned embryo; (G2) two aggregated WT embryos; (G3) one GFP cloned embryo; (G4) two aggregated GFP embryos; (G5) aggregation of a WT embryo and a GFP embryo; (G6) one parthenote embryo; or (G7) two aggregated parthenote embryos. Fusion (clones), cleavage (Day 2), and blastocyst (Day 7) rates, and embryonic cell allocation were compared by the. 2 or Fisher tests. Total cell number (TCN) in blastocysts was analyzed by the Student's test (P < 0.05). Fusion and cleavage rates, and cell allocation were similar between groups. On a per WOW basis, development to the blastocyst stage was similar between groups, except for lower rates of development seen in G3. However, when based on number of embryos per group (one or two), blastocyst development was higher in G1 than all other groups, which were similar between one another. Cloned GFP embryos had lower in vitro development to the blastocyst stage than WT embryos, which had more TCN than parthenote or aggregated chimeric WT/GFP embryos. Aggregated GFP embryos had fewer cells than the other embryo groups. Discussion: The in vitro development of GFP cloned embryos was lower than WT embryos, with no effects on cell allocation in resulting blastocysts. Differences in blastocyst rate between groups were likely due to lower GFP-expressing cell viability, as GFP donor cells were at high population cell doublings when used for cloning. On a per embryo basis, embryo aggregation on Day 1 resulted in blastocyst development similar to non-aggregated embryos on Day 7, with no differences in cell proportion between groups. The use of GFP-expressing cells was proven a promising strategy for the study of cell allocation during embryo development, which may assist in the elucidation of mechanisms of abnormalities after in vitro embryo manipulations, leading to the development of improved protocols for the in vitro production (IVP) of bovine embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 degrees C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. (C) 2012 Elsevier Ltd. All rights reserved.