903 resultados para 230120 Espectroscopia de rayos x
Resumo:
The oxygen concentration of liquid cobalt in equilibrium with cobalt aluminate and a-alumina has been measured by suction sampling and crucible quenching techniques at temperatures between 1770 and 1975 K. Experiments were made with cobalt of high and low initial oxygen contents, and with and without the addition of cobalt aluminate. The effect of temperature on the equilibrium oxygen content is represented by the equation, log (at.% 0) = -10,4001T(K) + 4.64 (±0.008). The composition of the spinel phase, CoO.(1+x)AI20 3, saturated with alumina, has been determined by electron probe microanalysis. The values of x are 0.22 at 1770 Kand 0.28 at 1975 K. The oxygen potential corresponding to the three-phase equilibrium between cobalt, aluminate and alumina, and the standard Gibbs' energy of formation of nonstoichiometric cobalt aluminate are evaluated by combining the results of this study with recently published data on the activity of oxygen in liquid cobalt. Implications of the present results to aluminium deoxidation of liquid cobalt are discussed.
Resumo:
The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.
Resumo:
A galactose-specific seed lectin from Spatholobous parviflorus (SPL) has been purified, crystallized and its X-ray structure solved. It is the first lectin purified and crystallized from the genus Spatholobus (family: Fabaceae). The crystals belong to the space group P1, with a = 60.792 angstrom, b = 60.998 angstrom, c = 78.179 angstrom, alpha = 78.68 degrees, beta = 88.62 degrees, gamma = 104.32 degrees. The data were collected at 2.04 angstrom resolution under cryocondition, on a MAR image-plate detector system, mounted on a rotating anode X-ray generator. The coordinates of Dolichos biflorus lectin (1lu1) were successfully used for the structure solution by molecular replacement method. The primary structure of the SPL was not known earlier and it was unambiguously visible in the electron density. S. parviflorus lectin is a hetero-dimeric-tetramer with two alpha and two beta chains of 251 and 239 residues respectively. SPL has two metal ions, Ca(2+) and Mn(2+), bound to a loop region of each chain. The SPL monomers are in jelly roll form. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The tie-lines delineating equilibria between CoF2-NiF2 and Co-Ni solid solutions in the ternary Co-Ni-F system at 1373 K have been determined by electron microprobe and EDAX point count analysis of the equilibrated phases. Activities in the fluoride solid solution have been derived from the knowledge of activitycomposition relation in the metallic solid solution and tie-line data,using a modified form of the Gibbs-Duhem integration. The fluorine potentials corresponding to the tie-line compositions have been calculated.The excess Gibbs' energy of mixing for the fluoride solid solution derived from the present data can be represented by the expression
Resumo:
The high temperature ceramic oxide superconductor YBa2Cu3O7-x (1–2–3 compound) is generally synthesized in an oxygen-rich environment. Hence any method for determining its thermodynamic stability should operate at a high oxygen partial pressure. A solid-state cell incorporating CaF2 as the electrolyte and functioning under pure oxygen at a pressure of 1·01 × 105 Pa has been employed for the determination of the Gibbs’ energy of formation of the 1–2–3 compound. The configuration of the galvanic cell can be represented by: Pt, O2, YBa2Cu3O7−x , Y2BaCuO5, CuO, BaF2/CaF2/BaF2, BaZrO3, ZrO2, O2, Pt. Using the values of the standard Gibbs’ energy of formation of the compounds BaZrO3 and Y2BaCuO5 from the literature, the Gibbs’ energy of formation of the 1–2–3 compound from the constituent binary oxides has been computed at different temperatures. The value ofx at each temperature is determined by the oxygen partial pressure. At 1023 K for O content of 6·5 the Gibbs’ energy of formation of the 1–2–3 compound is −261·7 kJ mol−1.
Resumo:
The distribution of zinc cation between crystallographically nonequivalent positions in ZnFe204 has been determined by anomalous X-ray scattering near the Zn K absorption edge. Measured intensity ratio with two energies close to the edge can be quantitatively explained only by assigning all zinc cations to the tetrahedral position in the approximately cubic close packed array of oxygen ions. A similar conclusion has also been reached for ZnxFe3-x04 solid solutions with x = 0.73, 0.54 and 0.35 employing the improved X-ray method. This is consistent with the EXAFS results which indicate an almost unchanged environmental structure around zinc cation in these solid solutions.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.
Resumo:
The crystal structure, thennal expansion and electrical conductivity of the solid solutions YOgCao.2Fel-x MnxOJ+c5 (0 ~ x ~ 1.0) were investigated. All compositions had the GdFeOrtype orthorhombic perovskite structure with trace amounts of a second phase present in case of x = 0.8 and 1.0. The lattice parameters were detennined at room tempe'rature by using X-ray powder diffraction (XRPD). The pseudocubic lattice constant decreased with increasing x. The average I inear thermal expansion coefficient (anv) in the temperature range from 673 to 973 K showed negligible change with x up to x = 0.4. The thennal expansion curve for x = I had a slope approaching zero in the temperature range from 648 to 948 K. The calculated activation energy values for electrical conduction indicate that conduction occurs primarily by the small polaron hopping mechanism. The drastic drop in electrical conductivity for a small addition of Mn (0 ~ x ~ 0.2) is caused by the preferential fonnation of Mn4t ion~ (rather than Fe4 +) which act as carrier traps. This continues till the charge compensation for the divalent ions on the A-site is complete. The results indicate that with further increase in manganese content (beyond x =0.4) in the solid solutions, there is an increase in exc :::ss oxygen and consequently, a small increase in Mn'll il>I1~, which are charge compensated by the formation of cation vancancies.
Resumo:
We consider the one-way relay aided MIMO X fading Channel where there are two transmitters and two receivers along with a relay with M antennas at every node. Every transmitter wants to transmit messages to every other receiver. The relay broadcasts to the receivers along a noisy link which is independent of the transmitters channel. In literature, this is referred to as a relay with orthogonal components. We derive an upper bound on the degrees of freedom of such a network. Next we show that the upper bound is tight by proposing an achievability scheme based on signal space alignment for the same for M = 2 antennas at every node.
Resumo:
Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.
Resumo:
We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.
Resumo:
Temperature modulated alternating differential scanning calorimetric studies show that Se rich Ge0.15Se0.85−xAgx (0 x 0.20) glasses are microscopically phase separated, containing Ag2Se phases embedded in a Ge0.15Se0.85 backbone. With increasing silver concentration, Ag2Se phase percolates in the Ge–Se matrix, with a well-defined percolation threshold at x = 0.10. A signature of this percolation transition is shown up in the thermal behavior, as the appearance of two exothermic crystallization peaks. Density, molar volume, and microhardness measurements, undertaken in the present study, also strongly support this view of percolation transition. The superionic conduction observed earlier in these glasses at higher silver proportions is likely to be connected with the silver phase percolation.
Resumo:
InAsxSb1−x alloys show a strong bowing in the energy gap, the energy gap of the alloy can be less than the gap of the two parent compounds. The authors demonstrate that a consequence of this alloying is a systematic degradation in the sharpness of the absorption edge. The alloy disorder induced band-tail (Urbach tail) characteristics are quantitatively studied for InAs0.05Sb0.95.