993 resultados para 204-1249C
Resumo:
Mode of access: Internet.
Resumo:
"May 1982."
Resumo:
Includes index.
Resumo:
Includes indexes.
Resumo:
"June 1972."
Resumo:
Includes index.
Resumo:
"August 1964."
Resumo:
Carl E. Mapess, chairman of subcommittee.
Resumo:
Spark source mass spectroscopy was used to analyze 61 elements in ten ferromanganese nodules found near Glenora in the Bay of Quinte at the eastern end of Lake Ontario. Most minor elements, including As, Pb, and Hg, have concentrations between 1-100 µg/g. F, S, Co, Zn, and La have concentrations in 100 µg/g range. Ba and Sr are present at levels of 1% and 0.1% respectively. Compared to similar measurements on nodules found in the Great Lakes and in other parts of the globe, values reported here are generally lower. Compared to their marine equivalents, lake nodules appear to be inferior scavengers of minor elements. Examination of all available data corroborates the postulate that marine biological material is an important source of minor elements found in oceanic nodules.
Resumo:
Sem resumo disponível.
Resumo:
Servicios registrales
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.