991 resultados para 203
Resumo:
Gynogenesis was induced using heterologous sperms in large-scale loach, Paramisgurnus dabryanus (Sauvage), in which a ZW/ZZ sex determination was previously proposed. Three microsatellite loci were used to monitor exclusive maternal inheritance of gynogenetic progenies. The results showed that high percentages of meiogynogens were produced at 4 min post-fertilization and mitogynogens were produced at 18 min post-fertilization by heat shocks, while meiotic gynogenesis was induced by cold shocks within a wide period and high heterozygosity was even observed in gynogens produced at 24 min post-fertilization. The sex ratios of the F, progenies in three gynogenetic families were significantly deviated from 1: 1 expectation with a female bias in two families and a male bias in one family (P < 0.05), and the other four gynogenetic families showed approximate 1:1 sex ratios. Moreover, the self-mating between gynogenetic F, progenies and mating between gynogenetic F, progenies and normal individuals produced all-female progenies or identical proportions of females and males. The data of sex ratios generally confirmed that the sex determination in large-scale loach was determined by the putative ZW/ZZ system, and the possible reasons causing the biased sex ratios are discussed.
Resumo:
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r(2) = 0.40, P = 0.000) and TP (r(2) = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r(2) = 0.27, P = 0.005) and mean body length (r(2) = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus-chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity.
Resumo:
A new multi-stress-inducible metallothionein (MT) gene isoform has been cloned and characterized from the ciliate Tetrahymena pyriformis. Both the 5'- and 3'-UT regions of the Tp-MT2 gene are very different from the previously reported Tp-MT1 isoform in this organism and from other described MT genes in Tetrahymena pigmentosa and Tetrahymena thermophila. The putative protein sequence of Tp-MT2 contains cysteine clusters with characteristics of the typical Tetrahymena Cd-inducible MT genes. However, the sequence has a special feature of four intragenic tandem repeats within its first half, with a conserved structural pattern x(5/8)CCCx(6)CCx(6)CxCxNCxCCK. To investigate the transcriptional activities of both Tp-MT2 and Tp-MT1 genes toward heavy metals (Cd, Hg, Cu, Zn) and H2O2, the mRNA levels of these two isoforms were evaluated by means of real-time quantitative PCR. Results showed that Tp-MT2 had a higher basal expression level than Tp-MT1 and both genes were induced by Cd, Hg, Cu, and Zn ions after short exposure (I h), although to different extents. Cd was the most effective metal inducer of both two isoforms, but the relative expression level of Tp-MT2 was much lower than that of Tp-MT1. Different expression patterns were also shown between the two genes when treated with Cd over a period of 24 h. We suggest that TpMT-1 plays the role of a multi-inducible stress gene, while TpMT-2 may have a more specific function in basal metal homeostasis although it may have undergone a functional differentiation process. The putative functional significance and evolutionary mode of the TpMT-2 isoform are discussed. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
The contamination and distribution of polychlorinated dibeinizo-p-dioxins and dibenzofurans (PCDD/Fs) from two agricultural fields of a heavily polluted lake area in China (Ya-Er Lake) are presented. The vertical distribution pattern of total PCDD/Fs in soil cores reveals that the maximum concentration was in the layer of 20-30 cm. The concentrations in the top layer of soil at the two sites were similar (17.48 ng/kg at Site 1 and 18.10 ng/kg at Site 2), but the maximum concentration of Site 1 (120.8 ng/kg) was two times higher than that of Site 2 (64.39 ng/kg). The maximum concentration of PCDD/Fs in mud cores in rice fields (0-50 cm) at Sites 1 and 2 was in the layer of 0-10 cm. The maximum PCDD/F concentration in the top layer in mud at Site 1 (203.1 ng/kg) was higher than that at Site 2: (143.3 ng/kg). Significant correlations were found between the mind PCDD/Fs and the organic carbon content (R = 0.9743, P< 0,05 at Site 1; R = 0.9821, P< 0.05 at Site 2), the two variables being highly correlated (R = 0.9049, P< 0.05, at Site 1; R = 0.9916, P< 0.05 at Site 2). All correlation coefficients were significant at the 95% level. Concentrations were highly correlated with organic carbon, indicating that sorption to organic carbon was the dominant mechanism. Using principal component analysis, the homologue profiles of soil, mud, and plants (rice and radish) were compared. The PCDD/F patterns in plants were found not to be correlated to those in soil and mud. This suggests that atmospheric deposition may be the main source of PCDD/Fs in rice grain. However, mixed exposure involving uptake mechanisms and atmospheric deposition is considered main the source of PCDD/F pollution in radishes. (C) 2002 Elsevier Science (USA).
Resumo:
Although reovirus infection is one of the major virus diseases of grass carp in China, the available knowledge on the structure and function of genes and proteins of the virus is limited. The complete sequence of the S9 genome segment of grass carp hemorrhage virus (GCHV) was determined. The segment consists of 1130 nucleotides and has a large open reading frame (ORF) encoding a protein of 352 amino acids with predicted molecular mass of 37.7 kDa. Amino acid sequence comparison revealed that the deduced protein encoded by GCHV S9 is closely related to the sigma NS proteins of mammalian reovirus (MRV) and avian reovirus (ARV). Secondary structure analysis displayed that the form of alpha -helices (40.1%) and beta -sheets (49.4%) are the richest two contents in the protein encoded by S9, and this protein is predicted to be a nonstructural protein. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Variations in kinetics of alkaline phosphatase occurring in different sites of sediment associated with cage culture of Oreochromis niloticus in a shallow Chinese freshwater lake (Lake Donghu) were described. In addition, the kinetic parameters of each 2.5-cm stratum in the sediment from the surface down to 37.5 cm were analyzed. Horizontally, the V-max values of alkaline phosphatase in surface sediments increased markedly at sites immediately under and adjacent to the cage that would be subjected to the deposition of fish feces. Peak V-max values in the top 5 cm of the sediment under the cage were also observed relative to their deeper control. After a treatment where the fish feces were added over 12 days, the sediment in deeper layer exhibited a significantly higher V-max value, thereby corroborating the relationship between V-max values of alkaline phosphatase and fish feces in sediments. The fish feces exhibited a remarkable alkaline phosphatase activity (APA). Thus, it is indeed a source of the enzyme. Effects of the fish feces were dose- and time-dependent. The V-max values in sediments were always stimulated, but the K-m values showed much more variability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
The effects of aquatic humic acids on the bioconcentration and acute toxicity of fenpropathrin were evaluated using grass carp, Ctenopharyngodan idellus, in laboratory freshwater systems. The results demonstrated that both bioavailability and acute toxicity decreased in the presence of aquatic humic acid 5 and 10 mg/liter. In addition, the extent of influence increased with increasing concentration of aquatic humic acid, (C) 1999 Academic Press.
Resumo:
Tin mono-sulphide (SnS) nanoparticles were synthesized by a facile method. Reactions producing narrow size distribution SnS nanoparticles with the diameter of 5.0-10 nm were carried out in an ethylene glycol solution at 150 degrees C for 24 h. Bulk heterojunction solar cells with the structure of indium tin oxide (ITO)/polyethylenedioxythiophene polystyrenesulphonate (PEDOT PSS)/SnS polymer/Al were fabricated by blending the nanoparticles with a conjugated polymer to form the active layer for the first time. Current density-voltage characterization of the devices showed that due to the addition of SnS nanoparticles to the polymer film, the device performance can be dramatically improved, compared with that of the pristine polymer solar cells. (c) 2009 Published by Elsevier B.V.
Resumo:
Cubic boron nitride (c-BN) films were prepared by ion beam assisted deposition (IBAD) technique, and the stresses were primary estimated by measuring the frequency shifts in the infrared-absorption peaks of c-BN samples. To test the possible effects of other factors, dependencies of the c-BN transversal optical mode position on film thickness and c-BN content were investigated. Several methods for reducing the stress of c-BN films including annealing, high temperature deposition, two-stage process, and the addition of a small amount of Si were studied, in which the c-BN films with similar thickness and cubic phase content were used to evaluate the effects of the various stress relief methods. It was shown that all the methods can reduce the stress in c-BN films to various extents. Especially, the incorporation of a small amount of Si (2.3 at.%) can result in a remarkable stress relief from 8.4 to similar to 3.6 GPa whereas the c-BN content is nearly unaffected, although a slight degradation of the c-BN crystallinity is observed. The stress can be further reduced down below I GPa by combination of the addition of Si with the two-stage deposition process. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Double-state lasing phenomena are easily observed in self-assembled quantum dot (QD) lasers. The effect of inter-level relaxation rate and cavity length on the double-state lasing performance of QD lasers is investigated on the basis of a rate equation model. Calculated results show that, for a certain cavity length, the ground state (GS) lasing threshold current increases almost linearly with the inter-level relaxation lifetime. However, as the relaxation rate becomes slower, the ratio of excited state (ES) lasing threshold current over the GS one decreases, showing an evident exponential behavior. A relatively feasible method to estimate the inter-level relaxation lifetime, which is difficult to measure directly, is provided. In addition, fast inter-level relaxation is favorable for the GS single-mode lasing, and leads to lower wetting layer (WL) carrier occupation probability and higher QD GS capture efficiency and external differential quantum efficiency. Besides, the double-state lasing effect strongly depends on the cavity length. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A small-size optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes is designed and theoretically simulated using plane wave expansion and finite-difference time-domain method. The interleaver is formed by two parallel and identical photonic crystal slab waveguides which are separated by three rows of air holes. The coupling region is designed below the light line to avoid vertical radiation. The simulated results show that the coupling coefficient is increased and the final length of the interleaver is decreased by enlarging the radius of the middle row of air holes. The transmission properties are analyzed after the interleaver's structure is optimized, and around 100 GHz channel spacing can be got when the length of the interleaver is chosen as 40.5 mu m. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Inductively coupled plasma (ICP) etching of InP in Cl-2/BCl3 gas mixtures is studied in order to achieve low-damage and high-anisotropy etching of two-dimensional InP/InGaAsP photonic crystal. The etching mechanisms are discussed and the effect of plasma heating on wafer during etching is analyzed. It is shown that the balance between the undercut originating from plasma heating and the redeposition of sputtering on the side-wall is crucial for highly anisotropic etching, and the balance point moves toward lower bias when the ICP power is increased. High aspect-ratio etching at the DC bias of 203 V is obtained. Eventually, photonic crystal structure with nearly 90 degrees side-wall is achieved at low DC bias after optimization of the gas mixture.
Resumo:
Nonpolar (1120) a-plane GaN thin films were grown on r-plane (1102) sapphire substrates by low-pressure metal organic chemical vapor deposition (MOCVD). The stress characteristics of the a-plane GaN films were investigated by means of polarized Raman scattering spectra in backscattering configurations. The experimental results show that there are strong anisotropic in-plane stresses within the epitaxial a-plane GaN films by calculating the corresponding stress tensors. The temperature dependence of Raman scattering spectra was studied in the range from 100 K to 550 K. The measurements reveal that the Raman phonon frequencies decrease with increasing temperature. The temperature at which nonpolar a-plane GaN films are strain free is discussed. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.