987 resultados para 2-LAYER FLUID


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known theoretically [1-3] that infinitely long fluid loaded plates in mean flow exhibit a range of unusual phenomena in the 'long time' limit. These include convective instability, absolute instability and negative energy waves which are destabilized by dissipation. However, structures are necessarily of finite length and may have discontinuities. Moreover, linear instability waves can only grow over a limited number of cycles before non-linear effects become dominant. We have undertaken an analytical and computational study to investigate the response of finite, discontinuous plates to ascertain if these unusual effects might be realized in practice. Analytically, we take a "wave scattering" [2,4] - as opposed to a "modal superposition" [5] - view of the fluttering plate problem. First, we solve for the scattering coefficients of localized plate discontinuities and identify a range of parameter space, well outside the convective instability regime, where over-scattering or amplified reflection/transmission occurs. These are scattering processes that draw energy from the mean flow into the plate. Next, we use the Wiener-Hopf technique to solve for the scattering coefficients from the leading and trailing edges of a baffled plate. Finally, we construct the response of a finite, baffled plate by a superposition of infinite plate propagating waves continuously scattering off the plate ends and solve for the unstable resonance frequencies and temporal growth rates for long plates. We present a comparison between our computational results and the infinite plate theory. In particular, the resonance response of a moderately sized plate is shown to be in excellent agreement with our long plate analytical predictions. Copyright © 2010 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key issue in the fabrication of Terfenol-D 2-2 composites with internal magnetic field biasing is the selection of appropriate constituent materials to obtain high magnetostriction while keeping optimum magnetomechanical properties. The fabrication process is costly and time consuming and, therefore, numerical methods to predict their properties are useful. In this paper, finite element analysis (FEA) of the magnetostriction of such composites has been carried out using the commercial package ABAQUS. It has been shown that composites fabricated using Nd2Fe14B for the permanent magnetic material layers possess the highest internal fields within the Terfenol-D layers, although the overall strain of these composites is limited to approximately 800 × 10-6 due to the high elastic modulus of Nd2Fe14B. Simulations showed that the strain can be enhanced by choosing a different material with a lower elastic modulus for the permanent magnetic layer even though the internal field is lower. The simulations showed that the strain can increase by 12% if the Nd 2Fe14B layer is substituted by SmCo5; by 23% if it is substituted by Sm2Co17; and by 35% if it is substituted by Alnico. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The method of modeling ion implantation in a multilayer target using moments of a statistical distribution and numerical integration for dose calculation in each target layer is applied to the modelling of As+ in poly-Si/SiO2/Si. Good agreement with experiment is obtained. Copyright © 1985 by The Institute of Electrical and Electronics Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a large improvement in the wetting of Al 2O 3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al 2O 3/graphene stack is then transferred to SiO 2 by standard methods. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments are conducted to examine the mechanisms behind the coupling between corner separation and separation away from the corner when holding a high-Machnumber M∞ = 1.5 normal shock in a rectangular channel. The ensuing shock wave interaction with the boundary layer on the wind tunnel floor and in the corners was studied using laser Doppler anemometry, Pitot probe traverses, pressure sensitive paint and flow visualization. The primary mechanism explaining the link between the corner separation size and the other areas of separation appears to be the generation of compression waves at the corner, which act to smear the adverse pressure gradient imposed upon other parts of the flow. Experimental results indicate that the alteration of the -region, which occurs in the supersonic portion of the shock wave/boundary layer interaction (SBLI), is more important than the generation of any blockage in the subsonic region downstream of the shock wave. © Copyright 2012 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We detect electroluminescence in single layer molybdenum disulphide (MoS2) field-effect transistors built on transparent glass substrates. By comparing absorption, photoluminescence, and electroluminescence of the same MoS2 layer, we find that they all involve the same excited state at 1.8eV. The electroluminescence has pronounced threshold behavior and is localized at the contacts. The results show that single layer MoS2, a direct band gap semiconductor, is promising for novel optoelectronic devices, such as 2-dimensional light detectors and emitters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, TiN/La 2O 3/HfSiON/SiO 2/Si gate stacks with thick high-k (HK) and thick pedestal oxide were used. Samples were annealed at different temperatures and times in order to characterize in detail the interaction mechanisms between La and the gate stack layers. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements performed on these samples show a time diffusion saturation of La in the high-k insulator, indicating an La front immobilization due to LaSiO formation at the high-k/interfacial layer. Based on the SIMS data, a technology computer aided design (TCAD) diffusion model including La time diffusion saturation effect was developed. © 2012 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and fabrication of a novel 2-scale topography dry electrode using macro and micro needles is presented. The macro needles enable biopotential measurements on hairy skin, the function of the micro needles is to decrease the electrode impedance even further by penetrating the outer skin layer. Also, a fast and reliable impedance characterization protocol is described. Based on this impedance measurement protocol, a comparison study is made between our dry electrode, 3 other commercial dry electrodes and a standard wet gel electrode. Promising results are already obtained with our electrodes which do not have skin piercing micro needles. For the proposed electrodes, three different conductive coatings (Ag/AgCl/Au) are compared. AgCl is found to be slightly better than Ag as coating material, while our Au coated electrodes have the highest impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riblets are small surface protrusions aligned with the flow direction, which confer an anisotropic roughness to the surface [6]. We have recently reported that the transitional-roughness effect in riblets, which limits their performance, is due to a Kelvin–Helmholtz-like instability of the overlying mean flow [7]. According to our DNSs, the instability sets on as the Reynolds number based on the roughness size of the riblets increases, and coherent, elongated spanwise vortices begin to develop immediately above the riblet tips, causing the degradation of the drag-reduction effect. This is a very novel concept, since prior studies had proposed that the degradation was due to the interaction of riblets with the flow as independent units, either to the lodging of quasi-streamwise vortices in the surface grooves [2] or to the shedding of secondary streamwise vorticity at the riblet peaks [9]. We have proposed an approximate inviscid analysis for the instability, in which the presence of riblets is modelled through an average boundary condition for an overlying, spanwise-independent mean flow. This simplification lacks the accuracy of an exact analysis [4], but in turn applies to riblet surfaces in general. Our analysis succeeds in predicting the riblet size for the onset of the instability, while qualitatively reproducing the wavelengths and shapes of the spanwise structures observed in the DNSs. The analysis also connects the observations with the Kelvin–Helmholtz instability of mixing layers. The fundamental riblet length scale for the onset of the instability is a ‘penetration length,’ which reflects how easily the perturbation flow moves through the riblet grooves. This result is in excellent agreement with the available experimental evidence, and has enabled the identification of the key geometric parameters to delay the breakdown. Although the appearance of elongated spanwise vortices was unexpected in the case of riblets, similar phenomena had already been observed over other rough [3], porous [1] and permeable [11] surfaces, as well as over plant [5,14] and urban [12] canopies, both in the transitional and in the fully-rough regimes. However, the theoretical analyses that support the connection of these observations with the Kelvin–Helmholtz instability are somewhat scarce [7, 11, 13]. It has been recently proposed that Kelvin–Helmholtz-like instabilities are a dominant feature common to “obstructed” shear flows [8]. It is interesting that the instability does not require an inflection point to develop, as is often claimed in the literature. The Kelvin-Helmholtz rollers are rather triggered by the apparent wall-normal-transpiration ability of the flow at the plane immediately above the obstructing elements [7,11]. Although both conditions are generally complementary, if wall-normal transpiration is not present the spanwise vortices may not develop, even if an inflection point exists within the roughness [10]. REFERENCES [1] Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 J. Fluid Mech. 562, 35–72. [2] Choi, H., Moin, P. & Kim, J. 1993 J. Fluid Mech. 255, 503–539. [3] Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 J. Fluid Mech. 589, 375–409. [4] Ehrenstein, U. 2009 Phys. Fluids 8, 3194–3196. [5] Finnigan, J. 2000 Ann. Rev. Fluid Mech. 32, 519–571. [6] Garcia-Mayoral, R. & Jimenez, J. 2011 Phil. Trans. R. Soc. A 369, 1412–1427. [7] Garcia-Mayoral, R. & Jimenez, J. 2011 J. Fluid Mech. doi: 10.1017/jfm.2011.114. [8] Ghisalberti, M. 2009 J. Fluid Mech. 641, 51–61. [9] Goldstein, D. B. & Tuan, T. C. 1998 J. Fluid Mech. 363, 115–151. [10] Hahn, S., Je, J. & Choi, H. 2002 J. Fluid Mech. 450, 259–285. [11] Jimenez, J., Uhlman, M., Pinelli, A. & G., K. 2001 J. Fluid Mech. 442, 89–117. [12] Letzel, M. O., Krane, M. & Raasch, S. 2008 Atmos. Environ. 42, 8770–8784. [13] Py, C., de Langre, E. & Moulia, B. 2006 J. Fluid Mech. 568, 425–449. [14] Raupach, M. R., Finnigan, J. & Brunet, Y. 1996 Boundary-Layer Meteorol. 78, 351–382.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study on normal hole bleed in a supersonic turbulent boundary layer has been conducted. A combination of LDV, Schlieren imagery and oil flow visualization were used to provide a better understanding of the three-dimensional flow field surrounding a supersonic bleed array. Experiments were performed at Mach numbers of 1.8 and 2.5, while previously published results at Mach numbers of 1.3 and 1.5 were also incorporated. The bleed system was capable of removing up to approximately 10% of the incoming boundary layer through a tunnel-spanning array of discrete holes with diameters the same order of magnitude of boundary layer displacement thickness. Inspection of boundary layer profiles downstream of the bleed region indicates that vorticity generated by the discrete holes can have a substantial influence on changes to the boundary layer shape factor and skin friction coefficient, through modification of the lower 20% of the boundary layer. This vorticity was visualized through oil-flow visualization, and LDV measurements, showing the development of two vortices off each bleed hole, and corresponding upwash and downwash regions with far-reaching three dimensional effects. © 2013 by J. M. Oorebeek and H. Babinsky.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible two-layer flows, and flows with viscosity gradients spanning the entire flow. New instability modes arise when the critical layer of the viscosity transport equation overlaps the viscosity gradient. A lubricating configuration with a less viscous wall layer is identified to be the most stabilizing at moderate miscibility (moderate Peclet numbers). This also is in contrast with the immiscible case, where the lubrication configuration is always destabilizing. The co-existence that we find under certain circumstances, of several growing overlap modes, the usual surface mode, and a Tollmien-Schlichting mode, presents interesting new possibilities for nonlinear breakdown. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine theoretically the transient displacement flow and density stratification that develops within a ventilated box after two localized floor-level heat sources of unequal strengths are activated. The heat input is represented by two non-interacting turbulent axisymmetric plumes of constant buoyancy fluxes B1 and B2 > B1. The box connects to an unbounded quiescent external environment of uniform density via openings at the top and base. A theoretical model is developed to predict the time evolution of the dimensionless depths λj and mean buoyancies δj of the 'intermediate' (j = 1) and 'top' (j = 2) layers leading to steady state. The flow behaviour is classified in terms of a stratification parameter S, a dimensionless measure of the relative forcing strengths of the two buoyant layers that drive the flow. We find that dδ1/dτ α 1/λ1 and dδ2/dτ α 1/λ2, where τ is a dimensionless time. When S 1, the intermediate layer is shallow (small λ1), whereas the top layer is relatively deep (large λ2) and, in this limit, δ1 and δ2 evolve on two characteristically different time scales. This produces a time lag and gives rise to a 'thermal overshoot', during which δ1 exceeds its steady value and attains a maximum during the transients; a flow feature we refer to, in the context of a ventilated room, as 'localized overheating'. For a given source strength ratio ψ = B1/B2, we show that thermal overshoots are realized for dimensionless opening areas A < Aoh and are strongly dependent on the time history of the flow. We establish the region of {A, ψ} space where rapid development of δ1 results in δ1 > δ2, giving rise to a bulk overturning of the buoyant layers. Finally, some implications of these results, specifically to the ventilation of a room, are discussed. © Cambridge University Press 2013.