803 resultados para 1st-year Medical-students
Resumo:
From south. Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. Photographer's log note: Neg. of Chem. Bldg. from Prof. Campbell.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. On verso: Old Chemical Laboratory. University of Michigan. Where I spent two very profitable years, 1891-1893. George Wagner.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. This image is from the northwest. Male person seated by tree.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. View through window to interior and hole in roof.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. Exterior with fire escape.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981. Window and fire escape.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981.
Resumo:
Built in 1856. First chemical laboratory at a state university. Building served medical students and others as both laboratory and classroom. Situated just west and south of the original medical building. Additions made to the one-story building in 1861, 1866, 1868, 1874. In 1880 a two-story addition was added with subsequent additions in 1889 and 1901. Became Economics Building in 1908. Pharmacology occupied north wing 1908-1981. Destroyed by fire Christmas Eve 1981.
Resumo:
Shipping list no. 93-0548-P.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background: The 'ease of use' andaccuracy in measurement of the vertical optic cup/discratio (VCDR) was compared between the conventional direct ophthalmoscope(CO) and Panoptic direct ophthalmoscope (PO) in a group of 'naive' firstyear medical students to determine which would be more suitablefor non-ophthalmologists. Methods: In this quasi-randomized method comparison study,eight students received an introductory session on ophthalmoscopythen examined 18 eyes (9 left, 9 right) with each ophthalmoscopein a private practice. The subjects were the eight students themselvesplus two other subjects. Each subject (n = 10)had one eye dilated. Students determined a VCDR and a subjectivescore of 'ease of use' on a scale of 1 (difficult)to 10 (easy). A consultant ophthalmologist (GAG) determined thebenchmark VCDR for each eye with each ophthalmoscope. Results: Of 288 eye examinations, there were 111 measure-ments of VCDR using the CO (47 undilated, 64dilated), and 140 measurements using the PO (75 undilated, 65 dilated).Differences in the students' estimated VCDR and the benchmarkwere similar for the CO and PO (P = 0.67). 'Easeof use' was scored in 288 eyes and the median score washigher in the PO overall (CO: median 8, IQR 6-9; PO median9, IQR 8-10; P < 0.0001), andwithin each session (P < 0.0001 foreach session). Conclusions: Medical students found the PO mucheasier to use, with accuracy of rating the VCDR similar to the CO. Thiscomparison would support the wider use of the PO amongst medicalstudents, general practitioners and other primary care providers.
Resumo:
Background: It is essential for health-care professionals to calculate drug doses accurately. Previous studies have demonstrated that many hospital doctors were unable to accurately convert dilutions (e.g. 1:1000) or percentages (e.g. percentage w/v) of drug concentrations into mass concentrations (e.g. mg/mL). Aims: The aims of the present study were to evaluate the ability of health-care professionals to perform drug dose calculations accurately and to determine their preferred concentration convention when calculating drug doses. Methods: A selection of nurses, medical students, house surgeons, registrars and pharmacists undertook a written survey to assess their ability to perform five drug dose calculations. Participants were also asked which concentration convention they preferred when calculating drug doses. The surveys were marked then analysed for health-care professionals as a whole and then by subgroup analysis to assess the performance of each health-care-professional group. Results: Overall, less than 14% of the surveyed health-care professionals could answer all five questions correctly. Subgroup analysis revealed that health-care pro-fessionals' ability to calculate drug doses were ranked in the following order: registrars approximate to pharmacists > house surgeons > medical students >> nurses. Ninety per cent of health-care professionals preferred to calculate drug doses using the mass concentration convention. Conclusions: Overall, drug dose calculations were performed poorly. Mass concentration was clearly indicated as the preferred convention for calculating drug doses.
Resumo:
Data provided by 400 first year undergraduate students were analysed to develop two short forms of the Eysenck Personality Profiler (EPP) in which each of the 22 primary scales is assessed by a 6-item and a 12-item version instead of the usual 20-item per scale measure. In comparison with the 6-item per scale measure, the 12-item version retains more of the characteristics of the long version and seems a good compromise between quality of data and administration time. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We review a single surgeon and surgical centre's experience with congenital cystic adenomatoid malformation of the lung (CCAML) in relation to clinical spectrum, operative experience, and postoperative course. A retrospective hospital record review was done on surgically treated cases of CCAML over a 10-year period, focusing on number with antenatal diagnosis, spectrum of postnatal presentation, type of surgery performed, and outcome. Forty-seven patients from birth to 14 years of age underwent surgery for CCAML. Antenatal diagnosis (ante) was made in 30 cases. Of these, 10 became symptomatic before surgery. Six of the 17 postnatally-diagnosed (pnd) cases were an asymptomatic incidental finding. Overall, 16 were symptomatic in the 1st year of life, and five were symptomatic beyond 1 year of age. Symptoms varied from respiratory distress (seven ante, six pnd) to chronic cough (three, and recurrent chest infection (three ante, two pnd). All preoperative diagnoses were confirmed with chest CT. Most patients (25) were operated on before 3 months of age. Eleven were operated on in the first 2 weeks of life as emergency surgery for respiratory distress. The most common lobe involved was the right upper lobe (16), and lobectomy was performed in 42 cases, segmentectomy in four, and pneumonectomy in one. Seventeen cases were extubated immediately postoperatively; 29 required postoperative ventilation overnight, and nine needed more prolonged ventilation. Early postoperative complications included pneumothorax (two), pleural effusion (one), and chylous effusion (one). Late complications included recurrence in three cases (all segmentectomy), who then subsequently underwent lobectomy. There was one death from respiratory failure. Because there is an increasing trend in the detection of asymptomatic antenatally-diagnosed CCAML, consideration of early surgical excision to prevent complications is suggested by our series. CT scanning is mandatory for postnatal evaluation because chest x-ray could be normal. Safe elective excision after 3 months is supported by our low morbidity and less need for postoperative ventilation. Lobectomy is the procedure of choice to prevent recurrence.