971 resultados para 17-BETA-ESTRADIOL
Resumo:
Bulk Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses, are found to exhibit memory type electrical switching. The switching voltages (V(t)) and thermal stability of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses are found to decrease with Sn content. The composition dependence of v, has been understood on the basis of the decrease in the OFF state resistance and thermal stability of these glasses with tin addition. X-ray diffraction studies reveal that no elemental Sn or Sn compounds with Te or Ge are present in thermally crystallized Ge-Te-Sn samples. This indicates that Sn atoms do not interact with the host matrix and form a phase separated network of its own, which remains in the parent glass matrix as an inclusion. Consequently, there is no enhancement of network connectivity and rigidity. The thickness dependence of switching voltages of Ge(15)Te(85 - x)Sn(x) and Ge(17)Te(83 - x)Sn(x) glasses is found to be linear, in agreement with the memory switching behavior shown by these glasses. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A solvent-free synthesis of alpha-aminonitriles and beta-nitroamines by oxidative cross-dehydrogenative coupling under aerobic condition is reported. A catalytic amount of molybdenum(VI) acetylacetonoate was found to catalyze cyanation of tertiary amines to form alpha-aminonitriles, whereas vanadium pentoxide was found to promote aza-Henry reaction to furnish beta-nitroamines. Both of these environmentally benign reactions are performed in the absence of solvents using molecular oxygen as an oxidant.
Resumo:
Binding of several bisindolylmaleimide (BIS) like (BIS-3, BIS-8 and UCN1) and other ligands (H89, SB203580 and Y27632) with the glycogen synthase kinase-3 (GSK-3 beta) has been studied using combined docking, molecular dynamics and Poisson-Boltzmann surface area analysis approaches. The study generated novel binding modes of these ligands that can rationalize why some ligands inhibit GSK-3 beta while others do not. The relative binding free energies associated with these binding modes are in agreement with the corresponding measured specificities. This study further provides useful insight regarding possible existence of multiple conformations of some ligands like H89 and BIS-8. It is also found that binding modes of BIS-3, BIS-8 and UCN1 with GSK-3 beta and PDK1 kinases are similar. These new insights are expected to be useful for future rational design of novel, more potent GSK-3 beta-specific inhibitors as promising therapeutics.
Resumo:
In this paper, a comparative study of thin films of Er2O3 and Gd2O3 grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) under the identical conditions has been presented. beta-Diketonate complex of rate earth metals was used as precursor. Description on the evolution of the morphology, structure, optical, and electrical characteristics of films with respect to growth parameters and post-deposition annealing process has been presented. As-gown Gd2O3 films grow with <111> texture, whereas the texture of Er2O3 films strongly depends on the growth temperature (either <100> or <111>). Compositional analysis reveals that the Gd2O3 films grown at or above 500degreesC are carbon free whereas Er2O3 films at upto 525degreesC show the presence of heteroatoms and Er2O3 films grown above 525degreesC are carbon five. The effective dielectric constant is in the range of 7-24, while the fixed charge density is in the range - 10(11) to 10(10) CM-2 as extracted from the C-V characteristics. DC I-V study was carried out to examine the leakage behaviour of films. It reveals that the as-grown Gd2O3 film was very leakey in nature. Annealing of the films in oxidizing ambient for a period of 20 min results in a drastic improvement in the leakage behaviour. The presence of heteroatoms (such as carbon) and their effect on the properties of films are discussed.
Resumo:
Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.
Resumo:
Mesoporous beta-MnO2 has been prepared, characterized and demonstrated to possess excellent catalytic activity in the thermal decomposition of ammonium perchlorate. The observed unprecedentedly low decomposition temperatures, fast reaction rates and enhanced heat releases in the catalysed formulations make mesoporous beta-MnO2 promising as a high-performing ballistic modifier in AP-based composite solid rocket propellants.
Resumo:
Boron addition to conventional titanium alloys below the eutectic limit refines the cast microstructure and improves mechanical properties. The present work explores the influence of hypoeutectic boron addition on the microstructure and texture evolution in Ti-6Al-4V alloy under beta extrusion. The beta extruded microstructure of Ti-6Al-4V is characterized by shear bands parallel to the extrusion direction. In contrast, the extruded Ti-6Al-4V-0.1B alloy shows a regular beta worked microstructure consisting of fine prior beta grains and acicular alpha-lamellae with no signs of the microstructural instability. Crystallographic texture after extrusion was almost identical for the two alloys indicating the similarity in their transformation behavior, which is attributed to complete dynamic recrystallization during beta processing. Microstructural features as well as crystallographic texture indicate dominant grain boundary related deformation processes for the boron modified alloy that leads to homogeneous deformation without instability formation. The absence of shear bands has significant technological importance as far as the secondary processing of boron added alloys in (alpha + beta)-phase field are concerned. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.