992 resultados para 14-BP POLYMORPHISM
Resumo:
OBJECTIVE: Previous research suggested that proper blood pressure (BP) management in acute stroke may need to take into account the underlying etiology. METHODS: All patients with acute ischemic stroke registered in the ASTRAL registry between 2003 and 2009 were analyzed. Unfavorable outcome was defined as modified Rankin Scale score >2. A local polynomial surface algorithm was used to assess the effect of baseline and 24- to 48-hour systolic BP (SBP) and mean arterial pressure (MAP) on outcome in patients with lacunar, atherosclerotic, and cardioembolic stroke. RESULTS: A total of 791 patients were included in the analysis. For lacunar and atherosclerotic strokes, there was no difference in the predicted probability of unfavorable outcome between patients with an admission BP of <140 mm Hg, 140-160 mm Hg, or >160 mm Hg (15.3 vs 12.1% vs 20.8%, respectively, for lacunar, p = 015; 41.0% vs 41.5% vs 45.5%, respectively, for atherosclerotic, p = 075), or between patients with BP increase vs decrease at 24-48 hours (18.7% vs 18.0%, respectively, for lacunar, p = 0.84; 43.4% vs 43.6%, respectively, for atherosclerotic, p = 0.88). For cardioembolic strokes, increase of BP at 24-48 hours was associated with higher probability of unfavorable outcome compared to BP reduction (53.4% vs 42.2%, respectively, p = 0.037). Also, the predicted probability of unfavorable outcome was significantly different between patients with an admission BP of <140 mm Hg, 140-160 mm Hg, and >160 mm Hg (34.8% vs 42.3% vs 52.4%, respectively, p < 0.01). CONCLUSIONS: This study provides evidence to support that BP management in acute stroke may have to be tailored with respect to the underlying etiopathogenetic mechanism.
Resumo:
Knowledge of T(1) relaxation times can be important for accurate relative and absolute quantification of brain metabolites, for sensitivity optimizations, for characterizing molecular dynamics, and for studying changes induced by various pathological conditions. (1)H T(1) relaxation times of a series of brain metabolites, including J-coupled ones, were determined using a progressive saturation (PS) technique that was validated with an adiabatic inversion-recovery (IR) method. The (1)H T(1) relaxation times of 16 functional groups of the neurochemical profile were measured at 14.1T and 9.4T. Overall, the T(1) relaxation times found at 14.1T were, within the experimental error, identical to those at 9.4T. The T(1)s of some coupled spin resonances of the neurochemical profile were measured for the first time (e.g., those of gamma-aminobutyrate [GABA], aspartate [Asp], alanine [Ala], phosphoethanolamine [PE], glutathione [GSH], N-acetylaspartylglutamate [NAAG], and glutamine [Gln]). Our results suggest that T(1) does not increase substantially beyond 9.4T. Furthermore, the similarity of T(1) among the metabolites (approximately 1.5 s) suggests that T(1) relaxation time corrections for metabolite quantification are likely to be similar when using rapid pulsing conditions. We therefore conclude that the putative T(1) increase of metabolites has a minimal impact on sensitivity when increasing B(0) beyond 9.4T.
Resumo:
Référence bibliographique : Rol, 57991
Resumo:
Référence bibliographique : Rol, 57992
Resumo:
Référence bibliographique : Rol, 57988
Resumo:
City Audit Report - Special Investigation
Resumo:
Référence bibliographique : Rol, 57245
Resumo:
Référence bibliographique : Rol, 57227
Resumo:
This is a periodic newsletter for customers, partners, friends and staff of the Iowa Department of Economic Development. It contains brief news items and links for gathering more information.
Resumo:
Référence bibliographique : Rol, 57989
Resumo:
Référence bibliographique : Rol, 57997
Resumo:
Référence bibliographique : Rol, 57995
Resumo:
Référence bibliographique : Rol, 57994
Resumo:
Weekly Newsletter for the State of Iowa Alcoholic Beverages Division