905 resultados para ~(133)Cs NMR
Resumo:
Submitted to Appl Magn Reson Sponsorship: EPSRC / EU
Resumo:
Winter, Rudolf; Jones, A.R.; Greaves, G.N.; Smith, I.H., (2005) 'Na-23, Si-29, and C-13 MAS NMR investigation of glass-forming reactions between Na2CO3 and SiO2', Journal of Physical Chemistry B 109(49) pp.23154-23161 RAE2008
Resumo:
Winter, Rudolf; Jones, A.R.; Florian, P.; Massiot, D., (2005) 'Tracing the reactive melting of glass-forming silicate batches by in situ Na-23 NMR', Journal of Physical Chemistry B 109(10) pp.4324-4332 RAE2008
Resumo:
The tris[tetrachlorobenzenediolato]phosphate(v) anion (TRISPHAT) is known to be an efficient NMR chiral shift agent for various chiral cationic species. Here we compare the efficiency of TRISPHAT and of a chiral lanthanide shift reagent for the determination of the enantiomeric purity of the chiral building block [Ru(phen)[2]PY[2]][2][+] which possesses C[2] symmetry. We also discuss our results in terms of the geometry of interaction between the Ru(II) complex and the TRISPHAT anion.
Resumo:
info:eu-repo/semantics/published
Resumo:
Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.
Resumo:
(1)H NMR spectroscopy is used to investigate a series of microporous activated carbons derived from a poly(ether ether ketone) (PEEK) precursor with varying amounts of burnoff (BO). In particular, properties relevant to hydrogen storage are evaluated such as pore structure, average pore size, uptake, and binding energy. High-pressure NMR with in situ H(2) loading is employed with H(2) pressure ranging from 100 Pa to 10 MPa. An N(2)-cooled cryostat allows for NMR isotherm measurements at both room temperature ( approximately 290 K) and 100 K. Two distinct (1)H NMR peaks appear in the spectra which represent the gaseous H(2) in intergranular pores and the H(2) residing in micropores. The chemical shift of the micropore peak is observed to evolve with changing pressure, the magnitude of this effect being correlated to the amount of BO and therefore the structure. This is attributed to the different pressure dependence of the amount of adsorbed and non-adsorbed molecules within micropores, which experience significantly different chemical shifts due to the strong distance dependence of the ring current effect. In pores with a critical diameter of 1.2 nm or less, no pressure dependence is observed because they are not wide enough to host non-adsorbed molecules; this is the case for samples with less than 35% BO. The largest estimated pore size that can contribute to the micropore peak is estimated to be around 2.4 nm. The total H(2) uptake associated with pores of this size or smaller is evaluated via a calibration of the isotherms, with the highest amount being observed at 59% BO. Two binding energies are present in the micropores, with the lower, more dominant one being on the order of 5 kJ mol(-1) and the higher one ranging from 7 to 9 kJ mol(-1).
Resumo:
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Resumo:
The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.
Resumo:
Syntheses and NMR studies are reported of two 15N-labelled Pt(II) complexes of anticancer interest: cis-PtCl2(15NH3)(c-C6H1115NH2), a metabolite of the orally-active Pt(IV) complex cis,trans,cis-[PtCl2(acetate)2(c-C6H11NH2)(NH3), and trans-[PtCl2(15NH3)(c-C6H1115NH2), a reduction product of the active Pt(IV) complex trans,trans,trans-[PtCl2(OH)2(c-C6H11NH2). For cis-[PtCl2(15NH3)(c-C6H1115NH2), hydrolysis was faster for the chloride ligand trans to cyclohexylamine, and the pKa values determined by [1H, 15N NMR spectroscopy for the two cis monoaqua isomers were the same (6.73). The trans monoaqua complex was a stronger acid with pKa of 5.4 (determined by 195Pt NMR). For the cis diaqua complex, pKa values of 5.68 and 7.68 were determined.
Resumo:
Recent developments in dynamic nuclear polarisation now allow significant enhancements to be generated in the cryo solid state and transferred to the liquid state for detection at high resolution. We demonstrate that the Ardenkjaer-Larsen method can be extended by taking advantage of the properties of the trityl radicals used. It is possible to hyperpolarise 13C and 15N simultaneously in the solid state, and to maintain these hyperpolarisations through rapid dissolution into the liquid state. We demonstrate the almost simultaneous measurement of hyperpolarised 13C and hyperpolarised 15N NMR spectra. The prospects for further improvement of the method using contemporary technology are also discussed.
Resumo:
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.