998 resultados para wood products
Resumo:
Diabetics have an increased prevalence of periodontitis, and diabetes is one of the causative factors of severe periodontitis. Apoptosis is thought to be involved in this pathogenic relationship. The aim of this study was to investigate apoptosis in human periodontal ligament (PDL) fibroblasts induced by advanced glycation end products (AGEs) and their receptor (RAGE). We examined the roles of apoptosis, AGEs, and RAGE during periodontitis in diabetes mellitus using cultured PDL fibroblasts that were treated by AGE-modified bovine serum albumin (AGE-BSA), bovine serum albumin (BSA) alone, or given no treatment (control). Microscopy and real-time quantitative PCR indicated that PDL fibroblasts treated with AGE-BSA were deformed and expressed higher levels of RAGE and caspase 3. Cell viability assays and flow cytometry indicated that AGE-BSA reduced cell viability (69.80±5.50%, P<0.01) and increased apoptosis (11.31±1.73%, P<0.05). Hoechst 33258 staining and terminal-deoxynucleotidyl transferase-mediated nick-end labeling revealed that AGE-BSA significantly increased apoptosis of PDL fibroblasts. The results showed that the changes in PDL fibroblasts induced by AGE-BSA may explain how AGE-RAGE participates in and exacerbates periodontium destruction.
Resumo:
The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.
Resumo:
Tomatoes are highly susceptible to fungi contamination in the field, during transportation, processing, and storage. Aspergillus flavus and Aspergillus parasiticus have been isolated from tomatoes and tomato products, and both fungi species can produce aflatoxin, mycotoxin with hepatotoxic, carcinogenic, teratogenic, and mutagenic effects on all animal species tested so far. In order to verify a possible aflatoxin contamination of tomato products commercialized in Brazil, 63 samples of tomato products (pulp, paste, purée, ketchup, dehydrated tomatoes, and dried tomatoes preserved in oil) produced in 5 Brazilian states and 1 imported sample (ketchup), totalizing 29 brands, were analyzed by thin layer chromatography. The analytical method showed an average recovery of 86% for all aflatoxins at two spiking levels. The limits of detection for the aflatoxins B1, B2, G1, and G2 varied with the type of the product ranging from 2 to 7 µg/kg. Aflatoxins were not detected in any evaluated sample indicating that they did not pose a risk to human health since there was no invasion of raw materials by toxigenic fungi or no conditions for toxin production.
Resumo:
This work had as objective the development of gluten-free breads and muffins using rice flour and maize and cassava starches. From seven samples resulting from a Simplex-Centroid design, the sensory and instrumental analyses of specific volume, elasticity, and firmness were performed. For the sensory analysis, the optimized formulation contained 50% of rice flour and 50% of cassava starch, and for the instrumental evaluation, the optimal simultaneous point for the three conducted analyses were 20% of rice flour, 30% of cassava starch, and 50% of maize starch. A comparative analysis of specific volume, elasticity, firmness, and triangular test was performed with pre-baked, baked, and frozen bread. Physicochemical, nutritional, and microbiological analyses were performed for both bread and muffin according to the Brazilian legislation.
Resumo:
Sodium alginate needs the presence of calcium ions to gelify. For this reason, the contribution of the calcium source in a fish muscle mince added by sodium alginate, makes gelification possible, resulting a restructured fish product. The three different calcium sources considered were: Calcium Chloride (CC); Calcium Caseinate (CCa); and Calcium lactate (CLa). Several physical properties were analyzed, including mechanical properties, colour and cooking loss. Response Surface Methodology (RSM) was used to determine the contribution of different calcium sources to a restructured fish muscle. The calcium source that modifies the system the most is CC. A combination of CC and sodium alginate weakened mechanical properties as reflected in the negative linear contribution of sodium alginate. Moreover, CC by itself increased lightness and cooking loss. The mechanical properties of restructured fish muscle elaborated were enhanced by using CCa and sodium alginate, as reflected in the negative linear contribution of sodium alginate. Also, CCa increased cooking loss. The role of CLa combined with sodium alginate was not so pronounced in the system discussed here.
Resumo:
The aging process of alcoholic beverages is generally conducted in wood barrels made with species from Quercus sp. Due to the high cost and the lack of viability of commercial production of these trees in Brazil, there is demand for new alternatives to using other native species and the incorporation of new technologies that enable greater competitiveness of sugar cane spirit aged in Brazilian wood. The drying of wood, the thermal treatment applied to it, and manufacturing techniques are important tools in defining the sensory quality of alcoholic beverages after being placed in contact with the barrels. In the thermal treatment, several compounds are changed by the application of heat to the wood and various studies show the compounds are modified, different aromas are developed, there is change in color, and beverages achieve even more pleasant taste, when compared to non-treated woods. This study evaluated the existence of significant differences between hydro-alcoholic solutions of sugar cane spirits elaborated from different species of thermo-treated and non-treated wood in terms of aroma. An acceptance test was applied to evaluate the solutions preferred by tasters under specific test conditions.
Resumo:
Halotolerant or halophilic (Archaeabacteria) microorganisms can be found in salted and ripening fish products that are not affected by salt. They can be moderate or extremely halophilic bacteria. The extremely halophilic bacteria require between 15-30% of NaCl for growth. The extremely halophilic archaeobacteria may be selectively isolated in different media. The aim of this work was to determine the effectiveness of the Salt-Agar-Milk medium, a medium modified in our laboratory through the addition of MgSO4 and KCl - named SAMm, and its effect on the bacterial growth by means of comparison with other media, with and without milk, determining time of incubation and counting. Two samples of salted fish from local fish salting factories and two laboratory strains were used. The factory samples were matured anchovy and anchovy fillets in oil, and the laboratory strains were: Haloarcula spp. (proteolytic) and Halococcus spp. (non-proteolytic). The following media were alternatively used for the isolation of extremely halophilic bacteria: IRAM; Formulation of Gibbons and collaborators, Cod Milk agar, and SAMm. IRAM and Gibbons were also used enriched with milk. In the SAMm medium, there were obtained count values similar or higher than the ones of the traditional media; besides the simplicity of its elaboration, the possibility to obtain positive results two or three days earlier also added to its benefit. Consequently, it can be considered an alternative to the media traditionally used for the studied halophilic bacteria.
Resumo:
Whey protein samples (S-1 to S-5) were tested in vivo and in vitro for nutritional properties and selected bioactivities. Weanling male Wistar rats fed modified AIN-93G (12 g protein.100 g-1) diets for 21 days were used the in vivo studies. The nutritional parameters did not differ among the protein diets tested. Erythrocyte glutathione content was considered high and was higher for S-3, but liver glutathione was the same for all dietary groups. For S-3, cytokine secretion (IL-10 and TNF-α) by human peripheral blood mononuclear cells (in RPMI-1640 medium) was higher in the absence of antigen than in the presence of BCG antigen. Interleukin-4 secretion was repressed in all treatments. The IC50, whey protein concentration required to inhibit 50% of the melanoma cell proliferation, was 2.68 mg.mL-1 of culture medium for the S-3 sample and 3.66 mg.mL-1 for the S-2 sample. Based on these results, it was concluded that S-3 (whey protein concentrate enriched with TGF-β and lactoferrin) produced better nutritional and immunological responses than the other products tested.
Resumo:
Shellfish are a source of food allergens, and their consumption is the cause of severe allergic reactions in humans. Tropomyosins, a family of muscle proteins, have been identified as the major allergens in shellfish and mollusks species. Nevertheless, few experimentally determined three-dimensional structures are available in the Protein Data Base (PDB). In this study, 3D models of several homologous of tropomyosins present in marine shellfish and mollusk species (Chaf 1, Met e1, Hom a1, Per v1, and Pen a1) were constructed, validated, and their immunoglobulin E binding epitopes were identified using bioinformatics tools. All protein models for these allergens consisted of long alpha-helices. Chaf 1, Met e1, and Hom a1 had six conserved regions with sequence similarities to known epitopes, whereas Per v1 and Pen a1 contained only one. Lipophilic potentials of identified epitopes revealed a high propensity of hydrophobic amino acids in the immunoglobulin E binding site. This information could be useful to design tropomyosin-specific immunotherapy for sea food allergies.