983 resultados para width-strip application
Resumo:
Dealing with digital medical images is raising many new security problems with legal and ethical complexities for local archiving and distant medical services. These include image retention and fraud, distrust and invasion of privacy. This project was a significant step forward in developing a complete framework for systematically designing, analyzing, and applying digital watermarking, with a particular focus on medical image security. A formal generic watermarking model, three new attack models, and an efficient watermarking technique for medical images were developed. These outcomes contribute to standardizing future research in formal modeling and complete security and computational analysis of watermarking schemes.
Resumo:
The issue of using informative priors for estimation of mixtures at multiple time points is examined. Several different informative priors and an independent prior are compared using samples of actual and simulated aerosol particle size distribution (PSD) data. Measurements of aerosol PSDs refer to the concentration of aerosol particles in terms of their size, which is typically multimodal in nature and collected at frequent time intervals. The use of informative priors is found to better identify component parameters at each time point and more clearly establish patterns in the parameters over time. Some caveats to this finding are discussed.
Resumo:
This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.
Resumo:
A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.
Resumo:
A nine level modular multilevel cascade converter (MMCC) based on four full bridge cells is shown driving a piezoelectric ultrasonic transducer at 71 and 39 kHz, in simulation and experimentally. The modular cells are small stackable PCBs, each with two fully integrated surface mount 22 V, 40 A MOSFET half-bridge converters, and include all control signal and power isolation. In this work, the bridges operate at 12 V and 384 kHz, to deliver a 96 Vpp 9 level waveform with an effective switching frequency of 3 MHz. A 9 pH air cored inductor forms a low pass filter in conjunction with the 3000 pF capacitance of the transducer load. Eight equally phase-displaced naturally sampled pulse width modulation (PWM) drive signals, along with the modulating sinusoid, are generated using phase accumulation techniques in a dedicated FPGA. Experimental time domain and FFT plots of the multilevel and transducer output waveforms are presented and discussed.
Resumo:
Particle number concentrations vary significantly with environment and, in this study, we attempt to assess the significance of these differences. Towards this aim, we reviewed 85 papers that have reported particle number concentrations levels at 126 sites covering different environments. We grouped the results into eight categories according to measurement location including: road tunnel, on-road, road-side, street canyon, urban, urban background, rural, and clean background. From these reports, the overall median number concentration for each of the eight site categories was calculated. The eight location categories may be classified into four distinct groups. The mean median particle number locations for these four types were found to be statistically different from each other. Rural and clean background sites had the lowest concentrations of about 3x103 cm-3. Urban and urban background sites showed concentrations that were three times higher (9x103 cm-3). The mean concentration for the street canyon, roadside and on-road measurement sites was 4.6x104 cm-3, while the highest concentrations were observed in the road tunnels (8.6x104 cm-3). This variation is important when assessing human exposure-response for which there is very little data available, making it difficult to develop health guidelines, a basis for national regulations. Our analyses shows that the current levels in environments affected by vehicle emissions are 3 to 28 times higher than in the natural environments. At present, there is no threshold level in response to exposure to ultrafine particles. Therefore, future control and management strategies should target a decrease of these particles in urban environments by more than one order of magnitude to bring them down to the natural background. At present there is a long way to go to achieve this.
Resumo:
We report the Heck coupling of 2-vinyl-4,5-dicyanoimidazole (vinazene) with selected di- and trihalo aromatics in an effort to prepare linear and branched electron-accepting conjugated materials for application in organic electronics. By selecting the suitable halo-aromatic moiety, it is possible to tune the HOMO - LUMO energy levels, absorption, and emission properties for a specific application. In this regard, materials with strong photoluminescence from blue → green → red are reported that may have potential application in organic light-emitting diodes (OLEDs). Furthermore, derivatives with strong absorption in the visible spectrum, coupled with favorable HOMO-LUMO levels, have been used to prepare promising organic photovoltaic devices (OPVs) when combined with commercially available semiconducting donor polymers.
Resumo:
With the increasing importance of Application Domain Specific Processor (ADSP) design, a significant challenge is to identify special-purpose operations for implementation as a customized instruction. While many methodologies have been proposed for this purpose, they all work for a single algorithm chosen from the target application domain. Such algorithm-specific approaches are not suitable for designing instruction sets applicable to a whole family of related algorithms. For an entire range of related algorithms, this paper develops a methodology for identifying compound operations, as a basis for designing “domain-specific” Instruction Set Architectures (ISAs) that can efficiently run most of the algorithms in a given domain. Our methodology combines three different static analysis techniques to identify instruction sequences common to several related algorithms: identification of (non-branching) instruction sequences that occur commonly across the algorithms; identification of instruction sequences nested within iterative constructs that are thus executed frequently; and identification of commonly-occurring instruction sequences that span basic blocks. Choosing different combinations of these results enables us to design domain-specific special operations with different desired characteristics, such as performance or suitability as a library function. To demonstrate our approach, case studies are carried out for a family of thirteen string matching algorithms. Finally, the validity of our static analysis results is confirmed through independent dynamic analysis experiments and performance improvement measurements.
Resumo:
Sewer main chokes (blockages) are a key performance indicator for Australian water utilities. Blockages caused by tree roots often result in wastewater overflow posing an environmental and health risk and also requiring service interruptions to repair asset. The purpose of the research project outlined in this paper was to understand the role of environmental parameters, in particular soil type and tree density, in determining the propensity of a sewer to become blocked. The paper demonstrates the application of spatial analysis to inform and communicate the results of the analysis. GIS was used to explore the relationship between tree density and previously recorded sewer blockages for a Melbourne utility. Initial results from the research reveal a relationship between increased tree densities and occurrence of sewer blockages. An improved understanding of the influence of environmental parameters on the inherent risk of sewer blockage will enable asset managers to identify those assets requiring proactive management in order to minimise service interruptions, repairs and environmental impacts.
Resumo:
The Environmental Kuznets Curve (EKC) hypothesises an inverse U-shaped relationship between a measure of environmental pollution and per capita income levels. In this study, we apply non-parametric estimation of local polynomial regression (local quadratic fitting) to allow more flexibility in local estimation. This study uses a larger and globally representative sample of many local and global pollutants and natural resources including Biological Oxygen Demand (BOD) emission, CO2 emission, CO2 damage, energy use, energy depletion, mineral depletion, improved water source, PM10, particulate emission damage, forest area and net forest depletion. Copyright © 2009 Inderscience Enterprises Ltd.
Resumo:
This paper presents our system to address the CogALex-IV 2014 shared task of identifying a single word most semantically related to a group of 5 words (queries). Our system uses an implementation of a neural language model and identifies the answer word by finding the most semantically similar word representation to the sum of the query representations. It is a fully unsupervised system which learns on around 20% of the UkWaC corpus. It correctly identifies 85 exact correct targets out of 2,000 queries, 285 approximate targets in lists of 5 suggestions.
Resumo:
Poor mine water management can lead to corporate, environmental and social risks. These risks become more pronounced as mining operations move into areas of water scarcity and/or increase climatic variability while also managing increased demand, lower ore grades and increased strip ratios. Therefore, it is vital that mine sites better understand these risks in order to implement management practices to address them. Systems models provide an effective approach to understand complex networks, particularly across multiple scales. Previous work has represented mine water interactions using systems model on a mine site scale. Here, we expand on that work by present an integrated tool that uses a systems modeling approach to represent mine water interactions on a site and regional scale and then analyses the risks associated with events stemming from those interactions. A case study is presented to represent three indicative corporate, environmental and social risks associated with a mine site that exists in a water scarce region. The tool is generic and flexible, and can be used in many scenarios to provide significant potential utility to the mining industry.
Resumo:
Lave and Wenger’s legitimate peripheral participation is an important aspect of online learning environments. It is common for teachers to scaffold varying levels of online participation in Web 2.0 contexts, such as online discussion forums and blogs. This study argues that legitimate peripheral participation needs to be redefined in response to students’ decentralised multiple interactions and non-linear engagement in hyperlinked learning environments. The study examines students’ levels of participation in online learning through theories of interactivity, distinguishing between five levels of student participation in the context of a first-year university course delivered via a learning management system. The data collection was implemented through two instruments: i) a questionnaire about students’ interactivity perception in the online reflective learning (n = 238) and then ii) an open discussion on the reason for the diverse perceptions of interactivity (n = 34). The study findings indicate that student participants, other than those who were active, need high levels of teacher or moderator intervention, which better enables legitimate peripheral participation to occur in online learning contexts.
Resumo:
This thesis has systemically investigated the possibility of improving one type of optical fiber sensors by using a novel mechanism. Many parameters of the sensor have been improved, and one outcome of this innovation is that civil structures, such as bridges and high-rise buildings, may be operated more safely and used longer.