828 resultados para white blossom sweet clover
Resumo:
The tensile strength of 576 pieces of white line horn collected over 6 mo from 14 dairy cows restricted to parity 1 or 2 was tested. None of the cows had ever been lame. Seven cows were randomly assigned to receive 20 mg/d biotin supplementation, and 7 were not supplemented. Hoof horn samples were taken from zones 2 and 3 (the more proximal and distal sites of the abaxial white line) of the medial and lateral claws of both hind feet on d 1 and on 5 further occasions over 6 mo. The samples were analyzed at 100% water saturation. Hoof slivers were notched to ensure that tensile strength was measured specifically across the white line region. The tensile stress at failure was measured in MPa and was adjusted for the cross-sectional area of the notch site. Data were analyzed in a multilevel model, which accounted for the repeated measures within cows. All other variables were entered as fixed effects. In the final model, there was considerable variation in strength over time. Tensile strength was significantly higher in medial compared with lateral claws, and zone 2 was significantly stronger than zone 3. Where the white line was visibly damaged the tensile strength was low. Biotin supplementation did not affect the tensile strength of the white line. Results of this study indicate that damage to the white line impairs its tensile strength and that in horn with no visible abnormality the white line is weaker in the lateral hind claw than the medial and in zone 3 compared with zone 2. The biomechanical strength was lowest at zone 3 of the lateral hind claw, which is the most common site of white line disease lameness in cattle.
Resumo:
Purpose – The purpose of this paper is to focus on the Fédération Internationale des Ingénieurs-Conseils (FIDIC) White Book standard form of building contract. It tracks the changes to this contract over its four editions, and seeks to identify their underlying causes. Design/methodology/approach – The changes made to the White Book are quantified using a specific type of quantitative content analysis. The amended clauses are then examined to understand the nature of the changes made. Findings – The length of the contract increased by 34 per cent between 1990 and 2006. A large proportion of the overall increase can be attributed to the clauses dealing with “conflict of interest/corruption” and “dispute resolution”. In both instances, the FIDIC drafting committees have responded to international developments to discourage corruption, and to encourage the use of alternative dispute resolution. Between 1998 and 2006, the average length of the sentences increased slightly, raising the question of whether long sentences are easily understood by users of contracts. Research limitations/implications – Quantification of text appears to be particularly useful for the analysis of documents which are regularly updated because changes can be clearly identified and the length of sentences can be determined, leading to conclusions about the readability of the text. However, caution is needed because changes of great relevance can be made to contract clauses without actually affecting their length. Practical implications – The paper will be instructive for contract drafters and informative for users of FIDIC's White Book. Originality/value – Quantifying text has been rarely used regarding standard-form contracts in the field of construction.
Resumo:
The texture and microstructure of white-brined cheeses similar to urfa (a traditional Turkish cheese) were studied. One batch of cheeses was made in the traditional manner and one batch was made from ultrafiltered (UF) milk. Samples from each batch were either ripened in brine after production or scalded in whey for 3 min at 90degreesC prior to ripening. The results showed only marginal differences in the ripening profiles of both batches of unscalded cheeses, but scalding slowed down the extent of proteolysis in both batches. The scalded cheeses had a firmer texture than the unscalded ones, and the unscalded UF cheese had a more 'springy' body than the unscalded traditional cheese. Overall, scalding resulted in a more homogeneous structure, but the unscalded UF cheese had a close texture that resembled the scalded samples. It was concluded that, with respect to texture and structure, cheeses made with UF milk do not need to be scalded after production.
Resumo:
The recovery of lactoferrin and lactoperoxidase from sweet whey was studied using colloidal gas aphrons (CGAs), which are surfactant-stabilized microbubbles (10-100 mum). CGAs are generated by intense stirring (8000 rpm for 10 min) of the anionic surfactant AOT (sodium bis-2-ethylhexyl sulfosuccinate). A volume of CGAs (10-30 mL) is mixed with a given volume of whey (1 - 10 mL), and the mixture is allowed to separate into two phases: the aphron (top) phase and the liquid (bottom) phase. Each of the phases is analyzed by SDS-PAGE and surfactant colorimetric assay. A statistical experimental design has been developed to assess the effect of different process parameters including pH, ionic strength, the concentration of surfactant in the CGAs generating solution, the volume of CGAs and the volume of whey on separation efficiency. As expected pH, ionic strength and the volume of whey (i.e. the amount of total protein in the starting material) are the main factors influencing the partitioning of the Lf(.)Lp fraction into the aphron phase. Moreover, it has been demonstrated that best separation performance was achieved at pH = 4 and ionic strength = 0.1 mol/L i.e., with conditions favoring electrostatic interactions between target proteins and CGAs (recovery was 90% and the concentration of lactoferrin and lactoperoxidase in the aphron phase was 25 times higher than that in the liquid phase), whereas conditions favoring hydrophobic interactions (pH close to pI and high ionic strength) led to lower performance. However, under these conditions, as confirmed by zeta potential measurements, the adsorption of both target proteins and contaminant proteins is favored. Thus, low selectivity is achieved at all of the studied conditions. These results confirm the initial hypothesis that CGAs act as ion exchangers and that the selectivity of the process can be manipulated by changing main operating parameters such as type of surfactant, pH and ionic strength.
Resumo:
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A whey salts mixture was used as a partial substitute for sodium chloride to provide a modified Na:K ratio (1:3.4) in the manufacture of white salted cheese using ultrafiltration. Reduction of chymosin addition from 20 to 8 mu L kg(-1) of cheese was also investigated. Variation of salt and chymosin levels did not result in any significant differences in composition and physicochemical properties. The rates of proteolysis in terms of water-soluble nitrogen (WSN) and nitrogen soluble in 12% trichloroacetic acid (TCA-SN) were affected by chymosin levels but not by salt treatment. Urea-PAGE electrophoretic analysis of caseins from the cheeses manufactured using three levels of chymosin and two salt types showed that the hydrolysis of alpha(s1)-casein was higher than for beta-caseins but the differences between the cheeses were not significant (P > 0.05). The chymosin level did not have a significant effect (P > 0.05) on hardness and fracturability, suggesting that any variation in hardness due to the initial hydrolysis was being confounded by other variables. Cheeses including the whey salts product were harder and more fracturable (P < 0.01) than the cheese treated with NaCl only. Both hardness and fracturability values decreased (P < 0.05) over the maturation period. The scores for bitterness were low; neither the effects of salt nor chymosin levels were significant (P > 0.05). (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual α(s1)- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.
Resumo:
White-salted cheeses were prepared from ultrafiltered (UF) cows' milk and salted to give final salt-in-moisture (SM) levels of 2.5, 3.2 and 4.0%. The cheeses were stored at 5degreesC and 10degreesC for up to 15 weeks. The microflora was dominated by lactic acid bacteria (LAB) but some mould growth was evident within 15 weeks at all SM levels and both temperatures. Levels of water-soluble nitrogen (WSN), attributed to chymosin activity, increased significantly with time, the rate being inversely proportional to the SM level and increasing with storage temperature. Similar effects were noted for trichloroacetic acid-soluble nitrogen (TCA-SN) and free amino acid (FAA) levels, both of which would also be affected by bacterial protease activity. The proteolytic activity was reflected by changes in the hardness and fracturability of the cheeses.
Resumo:
Male rats were treated with triiodothyronine in the drinking water for 12 days. In vitro rates of isoprenaline stimulated lipolysis were significantly greater in brown but not white adipose tissue. Rates of [14C]glucose incorporation into triacylglycerols were significantly reduced in BAT (brown adipose tissue) and WAT (white adipose tissue) under basal and isoprenaline stimulated conditions. In a second experiment, hyperthyroid animals showed impaired weight gain, despite increased food intake during 19 days' treatment. Energy expenditure on days 5 and 12, and BAT core temperature differences (TBAT - TCORE) on day 19, were significantly greater than in control animals. Epididymal white fat pad weight was reduced and interscapular brown fat pad weight increased by triiodothyronine treatment.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.