982 resultados para water storage
Resumo:
In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.
Resumo:
Mortar is the material responsible for the distribution of stresses in masonry structures. The knowledge about the fresh and hardened properties of mortar is fundamental to ensure a good performance of masonry walls. Water/cement ratio and aggregates grading are among several variables that influence physical and mechanical behaviour of mortars. An experimental program is presented in order to evaluate the influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Eighteen compositions of mortar are prepared using three relations cement:lime:sand, two types of sand and three water/cement ratios. Specimens are analyzed through flow table test, compressive and flexural strength tests. Results indicate that the increase of water/cement ratio reduces the values of hardened properties and increases the workability. Besides, sands grading has no influence in compressive strength. On the other hand, significant differences in deformation capacity of mortars were verified with the variation of the type of sand. Finally, some correlations are presented among hardened properties and the compressive strength. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Some peculiarities of water retention in a tropical lateritic soil of clayey nature are presented and discussed. The typical soil microstructure is shown through thin-layer plates emphasizing soil microaggregation and pore distribution and their repercussion on the soil-water retention curve and on hysteresis. It is shown that the clayey soil has a behavior that to a large extent resembles sandy soil, which is characterized by the relatively high saturated hydraulic conductivity, low air-entry value, and small suction range at which water drainage takes place. The severe weathering processes that originated this soil have produced an altered soil that seems to be homogeneous in terms of physical indices, hydraulic conductivity, and soil-water retention characteristics, up to 4.5 m in depth.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
Estrogens are a class of micro-pollutants found in water at low concentrations (in the ng L(-1) range), but often sufficient to exert estrogenic effects due to their high estrogenic potency. Disinfection of waters containing estrogens through oxidative processes has been shown to lead to the formation of disinfection byproducts, which may also be estrogenic. The present work investigates the formation of disinfection byproducts of 17 beta-estradiol (E2) and estrone (E1) in the treatment of water with ozone. Experiments have been carried out at two different concentrations of the estrogens in ground water (100 ng L(-1) and 100 mu g L(-1)) and at varying ozone dosages (0-30 mg L(-1)). Detection of the estrogens and their disinfection byproducts in the water samples has been performed by means of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a triple quadrupole (QqQ) and a quadrupole-time of flight (QqTOF) instrument. Both E2 and El have been found to form two main byproducts, with molecular mass (MM) 288 and 278 in the case of E2, and 286 and 276 in the case of El, following presumably the same reaction pathways. The E2 byproduct with MM 288 has been identified as 10epsilon-17beta-dihydroxy-1,4-estradieno-3-one (DEO), in agreement with previously published results. The molecular structures and the formation pathways of the other three newly identified byproducts have been suggested. These byproducts have been found to be formed at both high and low concentrations of the estrogens and to be persistent even after application of high ozone dosages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Pirapo river watershed (Parana State, Brazil) compounds a relatively industrialized and urbanized region, undergoing great pressure from the discharge of industrial, agricultural and domestic wastes. We evaluated the environmental quality of ten streams belonging to this watershed in April and June 2008 by performing acute and chronic toxicity tests with Daphnia similis and Ceriodaphnia silvestrii from water and sediment samples. We tested the hypothesis that the streams located in urban areas are more exposed to the influence of pollutants, than those outside the city limits. In addition, we obtained the measures of physical and chemical parameters, and identified the main polluted sources. Contrary to what was expected, the rural streams were more toxic than those located in urban area. These results demonstrate that the water bodies located in rural areas are being affected by the pollution of aquatic ecosystems as far as those found in urban areas, requiring the same attention of environmental managers in relation to its monitoring.
Resumo:
Mass transfer across a gas-liquid interface was studied theoretically and experimentally, using transfer of oxygen into water as the gas-liquid system. The experimental results support the conclusions of a theoretical description of the concentration field that uses random square waves approximations. The effect of diffusion over the concentration records was quantified. It is shown that the peak of the normalized rills concentration fluctuation profiles must be lower than 0.5, and that the position of the peak of the rms value is an adequate measure of the thickness of the diffusive layer. The position of the peak is the boundary between the regions more subject to molecular diffusion or to turbulent transport of dissolved mass.
Resumo:
This research work focuses on the analysis of hydraulic transients in polyvinyl chloride (PVC) pipes, which are characterized by a viscoelastic rheological behavior. Transient pressure data were collected in a pipe rig consisting of a set of PVC pipes. The creep function of the PVC pipes was determined by using an inverse transient model based on collected transient pressure data and compared with that obtained by carrying out mechanical tensile tests of PVC pipe specimens. The numerical results obtained from the transient solver have shown that the attenuation, dispersion, and shape of transient pressures were well described. The incorporation of the viscoelastic mechanical behavior in the hydraulic transient model has provided an excellent fitting between numerical results and observed data. Calibrated creep function based on inverse analysis fit the one determined by mechanical tests well, which emphasized the importance of pipe-wall viscoelasticity in hydraulic transients in PVC pipes.
Resumo:
The specific methanogenic activity (SMA) test is an important tool for the monitoring of anaerobic digestion. This paper presents the behavior of the methanogenic archaea of an anaerobic sludge under different conditions of oxygenation in a fixed-bed anaerobic-aerobic reactor treating domestic sewage. The reactor was operated in a continuous manner under different liquid recycle ratios from aerobic to anaerobic zones in order to remove carbon and nitrogen. The application of the SMA test was adapted from several authors and the measurement of the accumulated methane in the reactor was carried out by means of gas chromatography. Methanogenic organisms were not inhibited by the presence of oxygen. In contrast, the values of CH, production rate by sludge exposed to oxygen were greater than those obtained for strictly anaerobic sludge.
Resumo:
Artesian confined aquifers do not need pumping energy, and water from the aquifer flows naturally at the wellhead. This study proposes correcting the method for analyzing flowing well tests presented by Jacob and Lohman (1952) by considering the head losses due to friction in the well casing. The application of the proposed correction allowed the determination of a transmissivity (T = 411 m(2)/d) and storage coefficient (S = 3 x 10(-4)) which appear to be representative for the confined Guarani Aquifer in the study area. Ignoring the correction due to head losses in the well casing, the error in transmissivity evaluation is about 18%. For the storage coefficient the error is of 5 orders of magnitude, resulting in physically unacceptable value. The effect of the proposed correction on the calculated radius of the cone of depression and corresponding well interference is also discussed.
Resumo:
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.
Resumo:
Collapsible soils are usually nonsaturated, low density, and metastable-structured soils that are known to exhibit a volume reduction following an episode of moisture increase or suction reduction. This paper describes the collapsible behavior of clayey sand based on controlled soil suction tests carried out on undisturbed samples from the city of Pereira Barreto, in the State of Sao Paulo, Brazil. Foundation settlements due to soil collapse are common in this region and occurred during the filling of the reservoir of the Tres Irmaos Dam, which induced the elevation of the groundwater table in different parts of Pereira Barreto. This paper shows that collapse strains depend on the stress and soil suction acting in the sample and that saturation is not necessary for a collapse to occur. The influence of soil suction, gradual wetting, and the wetting and drying cycle on the collapsible behavior of the soil is also shown and discussed.
Resumo:
In this article, dispersed flow of viscous oil and water is investigated. The experimental work was performed in a 26.2-mm-i.d. 12-m-long horizontal glass pipe using water and oil (viscosity of 100 mPa s and density of 860 kg/m(3)) as test fluids. High-speed video recording and a new wire-mesh sensor based on capacitance (permittivity) measurements were used to characterize the flow. Furthermore, holdup data were obtained using quick-closing-valves technique (QCV). An interesting finding was the oil-water slip ratio greater than one for dispersed flow at high Reynolds number. Chordal phase fraction distribution diagrams and images of the holdup distribution over the pipe cross-section obtained via wire-mesh sensor indicated a significant amount of water near to the pipe wall for the three different dispersed flow patterns identified in this study: oil-in-water homogeneous dispersion (o/w H), oil-in-water non-homogeneous dispersion (o/w NH) and Dual continuous (Do/w & Dw/o). The phase slip might be explained by the existence of a water film surrounding the homogeneous mixture of oil-in-water in a hidrofilic-oilfobic pipe. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient still needs more research. The aim of this paper is to study the efficacy of certain surface treatments (such as hydrophobic agents, acrylic coating, polyurethane coating and double systems) in inhibiting chloride penetration in concrete. The results indicated that all tested surface protection significantly reduced the sorptivity of concrete (reduction rate > 70%). However, only the polyurethane coating was highly effective in reducing the chloride diffusion coefficient (reduction rate of 86%). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The construction, operation and demolition of buildings represent one of the most damaging human activities in the global environment nowadays and water use and conservation is one of the most representative environmental loads to be considered. Brazil, unlike some other countries, has not yet implemented its own body building environmental assessment. The development of an environmental assessment system requires the identification of the most important topics to be considered in each theme for each country or region, due to local environmental agenda. This article presents a summary of the main topics concerning water conservation considered in some international environmental building assessment systems and presents a proposal of topics to take into account in a Brazilian assessment system. Practical application: The civil construction industry is not only one of the biggest sectors in the economy but is also one of the greatest polluters. Along with standardisation, it is also necessary to establish measures to attract significantly higher levels in different topics related to sustainable construction. New mechanisms that allow users to recognise the difference between buildings with different sustainable performance levels need to be developed. This article will be used as a base for the development of a Brazilian system of assessment and rating for building environmental performance and sustainability in terms of water use and conservation.