768 resultados para underwater wireless sensor networks
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.
Resumo:
Negli ultimi anni i progressi tecnologici in termini di miniaturizzazione elettronica, hanno permesso la realizzazione di componenti hardware ed in particolare di microprocessori e sensori dalle dimensioni ridottissime. Questo ha favorito la recente diffusione di reti di sensori wireless (Wireless Sensor Network) basate su sistemi embedded più o meno complessi ed applicate a settori di mercato che vanno dalla domotica alle applicazioni industriali, fino al monitoraggio dei pazienti. Lo scopo di questa tesi, svolta in collaborazione con la società Rinnova di Forlì, consiste nell’implementazione di un dimostratore che mostri la reale capacità di realizzare una rete WS che si appoggia su di un sistema embedded commerciale ed ampiamente diffuso come la piattaforma Arduino ed in grado di rilevare il livello di ammoniaca presente negli allevamenti di pollame. Tale gas infatti, se presente in quantità notevole, provoca una dannosa alterazione comportamentale dei polli e risulta quindi un parametro molto importante da monitorare. Oltre al sensore di ammoniaca, misurazione principale richiesta dal progetto, ne sono stati aggiunti uno per la temperatura ed uno per l’umidità. L’architettura finale implementata è quella tipica di una rete a stella, in cui il master centrale colleziona a polling i dati provenienti dai sensori collegati agli slave e li invia ad un server web, rendendoli accessibili mediante la rete Internet. L’utente finale può così accedere alla pagina web da un qualunque PC dotato di connessione Internet, monitorare i dati dei sensori e soprattutto verificare quando il livello di ammoniaca supera la soglia di attenzione, potendo così intervenire immediatamente nell’allevamento per effettuare le dovute operazioni di pulizia.
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
Grazie al progresso dell'elettronica, ai giorni nostri, è possibile costruire dispositivi elettronici molto piccoli, che col passare del tempo lo sono sempre più. Questo ci permette di poter imboccare nuove strade nel mondo dell'informatica, sfruttando proprio questo fatto. Le dimensioni ridotte dei dispositivi in commercio, come sensori, attuatori, tag e tanto altro, sono particolarmente adatte a nuovi scenari applicativi. Internet of Things è una visione in cui Internet viene esteso alle cose. Facendo largo uso di dispositivi come sensori e tag è possibile realizzare sistemi intelligenti che possono avere riscontri positivi nella vita di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati sull'ambiente per realizzare sistemi automatici (ad esempio regolare automaticamente la luce o la temperatura di una stanza) sono solo alcuni esempi. Internet of Things è la naturale evoluzione di Internet, ed è destinato a cambiare radicalmente la nostra vita futura, poichè la tecnologia sarà sempre più parte integrante della nostra vita, aumentando sempre più il nostro benessere e riducendo sempre più il numero delle azioni quotidiane da compiere. Sempre più sono middleware, le piattaforme e i sistemi operativi che nascono per cercare di eliminare o ridurre le problematiche relative allo sviluppo di sistemi di questo genere, e lo scopo di questa tesi è proprio sottolinearne l'importanza e di analizzare gli aspetti che questi middleware devono affrontare. La tesi è strutturata in questo modo: nel capitolo uno verrà fatta una introduzione a Internet of Things, analizzando alcuni degli innumerevoli scenari applicativi che ne derivano, insieme però alle inevitabili problematiche di tipo tecnologico e sociale. Nel secondo capitolo verranno illustrate le tecnologie abilitanti di Internet of Things, grazie alle quali è possibile realizzare sistemi intelligenti. Nel terzo capitolo verranno analizzati gli aspetti relativi ai middleware, sottolineandone l'importanza e prestando attenzione alle funzioni che devono svolgere, il tutto riportando anche degli esempi di middleware esistenti. Nel quarto capitolo verrà approfondito il middleware Java Embedded di Oracle.
Resumo:
Progettazione di un sistema di misura contactless per la tensione, da integrare in un nodo sensore di una Wireless Sensor Network per Smart Metering Distribuito
Resumo:
Over the past several years, a number of design approaches in wireless mesh networks have been introduced to support the deployment of wireless mesh networks (WMNs). We introduce a novel wireless mesh architecture that supports authentication and authorisation functionalities, giving the possibility of a seamless WMN integration into the home's organization authentication and authorisation infrastructure. First, we introduce a novel authentication and authorisation mechanism for wireless mesh nodes. The mechanism is designed upon an existing federated access control approach, i.e. the AAI infrastructure that is using just the credentials at the user's home organization in a federation. Second, we demonstrate how authentication and authorisation for end users is implemented by using an existing web-based captive portal approach. Finally, we observe the difference between the two and explain in detail the process flow of authorized access to network resources in wireless mesh networks. The goal of our wireless mesh architecture is to enable easy broadband network access to researchers at remote locations, giving them additional advantage of a secure access to their measurements, irrespective of their location. It also provides an important basis for the real-life deployment of wireless mesh networks for the support of environmental research.
Resumo:
This paper presents our ongoing work on enterprise IT integration of sensor networks based on the idea of service descriptions and applying linked data principles to them. We argue that using linked service descriptions facilitates a better integration of sensor nodes into enterprise IT systems and allows SOA principles to be used within the enterprise IT and within the sensor network itself.
Resumo:
To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
BACKGROUND The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer's disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors' and caregivers' awareness of the patient's cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient's ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient's home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (e.g., via smartphone). OBJECTIVE We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient's attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. METHODS The components of this novel assistive technology system were wireless sensors distributed in every room of the participant's home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified. RESULTS In this study, 10 healthy participants (6 women, 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). CONCLUSIONS The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.