946 resultados para tungsten disulfide
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Clinical performance of composite resins depends largely on their mechanical properties,and those are influenced by several factors,such as the light-curing mode. The purpose of this study was to evaluate the influence of different light sources on degree of conversion(DC), Knoop hardness(KHN) and plasticization(P) of a composite resin. Disc-shaped specimens (5 x 2 mm) of Esthet-X(Dentsply) methacrylate-based microhybrid composite were light-cured using quartz-tungsten-halogen (QTH) Optilight Plus(Gnatus) or light-emitting diode(LED) Ultraled(Dabi Atlante) curing units at 400 and 340 mW/cm2 of irradiance, respectively. After 24 h, absorption spectra of composite were obtained using Nexus 670(Nicolet)FT-IR spectrometer in order to calculate the DC.The KHN was measured in the HMV-2000(Shimadzu) microhardness tester under 50 g loads for 15 s, and P was evaluated by percentage reductio of hardness after 24 h of alcohol storage. Data were subjected to t-Student test(alpha=0.05).QTH device showed lower P and higher KHN$ than LED (p<0.05), and no difference between the light-curing units was found for DC (p>0.05). The halogen-curing unit with higher irradiance promoted higher KHN and lower softening in alcohol than LED.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.
Resumo:
PREPARATION OF COATED MICROTOOLS FOR ELECTROCHEMICAL MACHINING APPLICATIONS Ajaya K. Swain, M.S. University of Nebraska, 2010 Advisor: K.P. Rajurkar Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in higher material removal, better surface finish, and increased wear resistance. However, a study on the performance of coated tools in micromachining has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. Besides the technical requirement, economic and environmental aspects of the material and the coating technique used also play a significant role in coating microtools. This, in fact, restricts the range of coating materials and the type of coating process. Handling is another major issue in case of microtools purely because of their miniature size. This research focuses on the preparation of coated microtools for pulse electrochemical machining by electrodeposition. The motivation of this research is derived from the fact that although there were reports of improved machining by using insulating coatings on ECM tools, particularly in ECM drilling operations, not much literature was found relating to use of metallic coating materials in other ECM process types. An ideal ECM tool should be good thermal and electrical conductor, corrosion resistant, electrochemically stable, and stiff enough to withstand electrolyte pressure. Tungsten has almost all the properties desired in an ECM tool material except being electrochemically unstable. Tungsten can be oxidized during machining resulting in poor machining quality. Electrochemical stability of a tungsten ECM tool can be improved by electroplating it with nickel which has superior electrochemical resistance. Moreover, a tungsten tool can be coated in situ reducing the tool handling and breakage frequency. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material (about 28%) than the uncoated tool under similar conditions and was more electrochemical stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.
Resumo:
As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.
Resumo:
Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.
Resumo:
Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.
Resumo:
The aims of this in vivo study were to compare the effectiveness and color stability of at-home and in-office bleaching techniques and to evaluate whether the use of light sources can alter bleaching results. According to preestablished criteria, 40 patients were selected and randomly divided into four groups according to bleaching treatment: (1) at-home bleaching with 10% carbamide peroxide, (2) in-office bleaching with 35% hydrogen peroxide (HP) without a light source, (3) in-office bleaching with 35% HP with quartz-tungsten-halogen light, and (4) in-office bleaching with 35% HP with a light-emitting diode/laser. Tooth shade was evaluated using the VITA Classical Shade Guide before bleaching as well as after the first and third weeks of bleaching. Tooth shade was evaluated again using the same guide 1 and 6 months after the completion of treatment. The shade guide was arranged to yield scores that were used for statistical comparison. Statistical analysis using the Kruskal-Wallis test showed no significant differences among the groups for any time point (P > .01). There was no color rebound in any of the groups. The bleaching techniques tested were equally effective. Light sources are unnecessary to bleach teeth. (Int J Periodontics Restorative Dent 2012;32:303-309.)