926 resultados para treatment resistance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic atmospheric CO2 concentrations are increasing rapidly, resulting in declining seawater pH (ocean acidification). The majority of ocean acidification research to date has focused on the effects of decreased pH in single-species experiments. To assess how decreased pH may influence natural macroalgal-grazer assemblages, we conducted a mesocosm experiment with the common, chemically defended Antarctic brown macroalga Desmarestia menziesii and natural densities of its associated grazer assemblage, predominantly amphipods. Grazer assemblages were collected from the immediate vicinity of Palmer Station (64°46'S, 64°03'W) in March 2013. Assemblages were exposed for 30 days to three levels of pH representing present-day mean summer ambient conditions (pH 8.0), predicted near-future conditions (2100, pH 7.7), and distant-future conditions (pH 7.3). A significant difference was observed in the composition of mesograzer assemblages in the lowest pH treatment (pH 7.3). The differences between assemblages exposed to pH 7.3 and those maintained in the other two treatments were driven primarily by decreases in the abundance of the amphipod Metaleptamphopus pectinatus with decreasing pH, reduced copepod abundance at pH 7.7, and elevated ostracod abundance at pH 7.7. Generally, the assemblages maintained at pH 7.7 were not significantly different from those at ambient pH, demonstrating resistance to short-term decreased pH. The relatively high prevalence of generalist amphipods may have contributed to a net stabilizing effect on the assemblages exposed to decreased pH. Overall, our results suggest that crustacean grazer assemblages associated with D. menziesii, the dominant brown macroalgal species of the western Antarctic Peninsula, may be resistant to short-term near-future decreases in seawater pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Funding: This work was supported by a Clinical PhD Fellowship to MRP (090665) and a Principal Research Fellowship to AHF (079838) from the Wellcome Trust (http://www.wellcome.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction - The present study aimed to describe characteristics of patients with type 2 diabetes (T2D) in UK primary care initiated on dapagliflozin, post-dapagliflozin changes in glycated hemoglobin (HbA1c), body weight and blood pressure, and reasons for adding dapagliflozin to insulin. Methods - Retrospective study of patients with T2D in the Clinical Practice Research Datalink with first prescription for dapagliflozin. Patients were included in the study if they: (1) had a first prescription for dapagliflozin between November 2012 and September 2014; (2) had a Read code for T2D; (3) were registered with a practice for at least 6 months before starting dapagliflozin; and (4) remained registered for at least 3 months after initiation. A questionnaire ascertained reason(s) for adding dapagliflozin to insulin. Results - Dapagliflozin was most often used as triple therapy (27.7%), dual therapy with metformin (25.1%) or added to insulin (19.2%). Median therapy duration was 329 days [95% confidence interval (CI) 302–361]. Poor glycemic control was the reason for dapagliflozin initiation for 93.1% of insulin-treated patients. Avoiding increases in weight/body mass index and insulin resistance were the commonest reasons for selecting dapagliflozin versus intensifying insulin. HbA1c declined by mean of 9.7 mmol/mol (95% CI 8.5–10.9) (0.89%) 14–90 days after starting dapagliflozin, 10.2 mmol/mol (95% CI 8.9–11.5) (0.93%) after 91–180 days and 12.6 mmol/mol (95% CI 11.0–14.3) (1.16%) beyond 180 days. Weight declined by mean of 2.6 kg (95% CI 2.3–2.9) after 14–90 days, 4.3 kg (95% CI 3.8–4.7) after 91–180 days and 4.6 kg (95% CI 4.0–5.2) beyond 180 days. In patients with measurements between 14 and 90 days after starting dapagliflozin, systolic and diastolic blood pressure decreased by means of 4.5 (95% CI −5.8 to −3.2) and 2.0 (95% CI −2.9 to −1.2) mmHg, respectively from baseline. Similar reductions in systolic and diastolic blood pressure were observed after 91–180 days and when follow-up extended beyond 180 days. Results were consistent across subgroups. Conclusion - HbA1c, body weight and blood pressure were reduced after initiation of dapagliflozin in patients with T2D in UK primary care and the changes were consistent with randomized clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colistin, a cationic polypeptide antibiotic, has reappeared in human medicine as a last-line treatment option for multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin is widely used in veterinary medicine for the treatment of gastrointestinal infections caused by Enterobacteriaceae. GNB resistant to colistin owing to chromosomal mutations have already been reported both in human and veterinary medicine, however several recent studies have just identified a plasmid-mediated mcr-1 gene encoding for colistin resistance in Escherichia coli colistin resistance. The discovery of a non-chromosomal mechanism of colistin resistance in E. coli has led to strong reactions in the scientific community and to concern among physicians and veterinarians. Colistin use in food animals and particularly in pig production has been singled out as responsible for the emergence of colistin resistance. The present review will focus mainly on the possible link between colistin use in pigs and the spread of colistin resistance in Enterobacteriaceae. First we demonstrate a possible link between Enterobacteriaceae resistance emergence and oral colistin pharmacokinetics/pharmacodynamics and its administration modalities in pigs. We then discuss the potential impact of colistin use in pigs on public health with respect to resistance. We believe that colistin use in pig production should be re-evaluated and its dosing and usage optimised. Moreover, the search for competitive alternatives to using colistin with swine is of paramount importance to preserve the effectiveness of this antibiotic for the treatment of MDR-GNB infections in human medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100, lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the most frequently diagnosed cancer in women, accounting for over 25% of cancer diagnoses and 13% of cancer-related deaths in Canadian women. There are many types of therapies for treatment or management of breast cancer, with chemotherapy being one of the most widely used. Taxol (paclitaxel) is one of the most extensively used chemotherapeutic agents for treating cancers of the breast and numerous other sites. Taxol stabilizes microtubules during mitosis, causing the cell cycle to arrest until eventually the cell undergoes apoptosis. Although Taxol has had significant benefits in many patients, response rates range from only 25-69%, and over half of Taxol-treated patients eventually acquire resistance to the drug. Drug resistance remains one of the greatest barriers to effective cancer treatment, yet little has been discerned regarding resistance to Taxol, despite its widespread clinical use. Kinases are known to be heavily involved in cancer development and progression, and several kinases have been linked to resistance of Taxol and other chemotherapeutic agents. However, a systematic screen for kinases regulating Taxol resistance is lacking. Thus, in this study, a set of kinome-wide screens was conducted to interrogate the involvement of kinases in the Taxol response. Positive-selection and negative-selection CRISPR-Cas9 screens were conducted, whereby a pooled library of 5070 sgRNAs targeted 507 kinase-encoding genes in MCF-7 breast cancer cells that were Taxol-sensitive (WT) or Taxol-resistant (TxR) which were then treated with Taxol. Next generation sequencing (NGS) was performed on cells that survived Taxol treatment, allowing identification and quantitation of sgRNAs. STK38, Blk, FASTK and Nek3 stand out as potentially critical kinases for Taxol-induced apoptosis to occur. Furthermore, kinases CDKL1 and FRK may have a role in Taxol resistance. Further validation of these candidate kinases will provide novel pre-clinical data about potential predictive biomarkers or therapeutic targets for breast cancer patients in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.

METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.

RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).

CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The androgen receptor (AR) is expressed in 60-80% of breast cancers (BC) across all molecular phenotypes, with a higher incidence in oestrogen receptor positive (ER+) BC compared to ER negative tumours. In ER+ disease, AR-expression has been linked to endocrine resistance which might be reversed with combined treatment targeting ER and AR. In triple negative BCs (TNBC), preclinical and clinical investigations have described a subset of patients that express the AR and are sensitive to androgen blockade, providing a novel therapeutic target. Enzalutamide, a potent 2nd generation anti-androgen, has demonstrated substantial preclinical and clinical anti-tumour activity in AR+ breast cancer. Short-term preoperative window of opportunity studies are a validated strategy for novel treatments to provide proof-of-concept and define the most appropriate patient population by directly assessing treatment effects in tumour tissue before and after treatment. The ARB study aims to assess the anti-tumour effects of enzalutamide in early ER+ breast cancer and TNBC, to identify the optimal target population for further studies and to directly explore the biologic effects of enzalutamide on BC and stromal cells. Methods: ARB is an international, investigator sponsored WOO phase II study in women with newly diagnosed primary ER+ BC or AR+ TNBC of ≥ 1cm. The study has two cohorts. In the ER+ cohort, postmenopausal patients will be randomised 2:1 to receive either enzalutamide (160mg OD) plus exemestane (50mg OD) or exemestane (25mg OD). In the TNBC cohort, AR+ will receive single agent treatment with enzalutamide (160mg OD). Study treatment is planned for 15–29 days, followed by surgery or neo-adjuvant therapy. Tissue and blood samples are collected before treatment and on the last day of study treatment. The primary endpoint is inhibition of tumour-cell proliferation, as measured by change in Ki67 expression, determined centrally by 2 investigators. Secondary endpoints include induction of apoptosis (Caspase3), circulating hormone levels and safety. ARB aims to recruit ≈235 patients from ≈40 sites in the UK, Germany, Spain and USA. The study is open to recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes mellitus is a major chronic disease that continues to increase significantly. One of the most important and costly complications of diabetes are foot infections that may be colonized by pathogenic and antimicrobial resistant bacteria, harboring several virulence factors, that could impair its successful treatment. Staphylococcus aureus is one of the most prevalent isolate in diabetic foot infections, together with aerobes and anaerobes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08