941 resultados para tibial plato leveling osteotomy
Resumo:
This study examined the electromyographic, cerebral and muscle hemodynamic responses during intermittent isometric contractions of biceps brachii at 20, 40, and 60% of maximal voluntary contraction (MVC). Eleven volunteers completed 2 min of intermittent isometric contractions (12/min) at an elbow angle of 90° interspersed with 3 min rest between intensities in systematic order. Surface electromyography (EMG) was recorded from the right biceps brachii and near infrared spectroscopy (NIRS) was used to simultaneously measure left prefrontal and right biceps brachii oxyhemoglobin (HbO2), deoxyhemoglobin (HHb), and total hemoglobin (Hbtot). Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) bilaterally. Finger photoplethysmography was used to record beat-to-beat blood pressure and heart rate. EMG increased with force output from 20 to 60% MVC (P < 0.05). Cerebral HbO2 and Hbtot increased while HHb decreased during contractions with differences observed between 60% vs. 40% and 20% MVC (P < 0.05). Muscle HbO2 decreased while HHb increased during contractions with differences being observed among intensities (P < 0.05). Muscle Hbtot increased from rest at 20% MVC (P < 0.05), while no further change was observed at 40 and 60% MVC (P > 0.05). MCAv increased from rest to exercise but was not different among intensities (P > 0.05). Force output correlated with the root mean square EMG and changes in muscle HbO2 (P < 0.05), but not changes in cerebral HbO2 (P > 0.05) at all three intensities. Force output declined by 8% from the 1st to the 24th contraction only at 60% MVC and was accompanied by systematic increases in RMS, cerebral HbO2 and Hbtot with a leveling off in muscle HbO2 and Hbtot. These changes were independent of alterations in mean arterial pressure. Since cerebral blood flow and oxygenation were elevated at 60% MVC, we attribute the development of fatigue to reduced muscle oxygen availability rather than impaired central neuronal activation.
Resumo:
In this paper, an advanced technique for the generation of deformation maps using synthetic aperture radar (SAR) data is presented. The algorithm estimates the linear and nonlinear components of the displacement, the error of the digital elevation model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting nonuniform mesh tessellated with the Delauney triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the nonlinear component of movement and atmospheric artifacts with alternate filtering techniques in both the temporal and spatial domains. The method presents high flexibility with respect to the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with European Remote Sensing SAR data from an area of Catalonia (Spain) and validated with on-field precise leveling measurements.
Resumo:
The aim of this study was to systematically review literature reporting on the use of external distraction osteogenesis (DO) and internal DO in the treatment of severe maxillary hypoplasia in cleft and palate patients. Literature research has been performed using the PubMed database of the National Library of Medicine and National Institutes of Health from 1966 to August 2007. We used cleft lip and palate and distraction osteogenesis as key words. Of the 104 articles found, we only considered the Anglo-Saxon literature, which reported on the correction of the maxillary hypoplasia with DO techniques. A total of 32 studies reported on anteroposterior external DO (27 studies on rigid external device and 5 on face mask), 17 studies reported on anteroposterior internal DO, and 3 studies reported on transverse internal DO have been retained for this review. Despite the heterogeneity and methodological limitations of most of the studies, results showed that external DO with rigid external device and internal DO resulted to be a more reliable and accurate technique than the face mask in the management of severe maxillary hypoplasia in patients with cleft lip and palate. The current review demonstrated that external and internal DO in the treatment of severe maxillary hypoplasia in cleft and palate patients (1) is a reproducible and valuable alternative to standard orthognathic surgery procedures, (2) allows for a global improvement in facial aesthetic, (3) allows a maxillary correction in patients during the period of mixed dentition, and (4) allows either for an unchanged or better velopharyngeal function.
Resumo:
Accurate measurement of knee kinematics during functional activities suffers mainly from soft tissue artifact (STA): the combination of local surface deformations and rigid movement of markers relative to the underlying bone (also called rigid STA movement: RSTAM). This study proposes to assess RSTAM on the thigh, shank, and knee joint and to observe possible features between subjects. Nineteen subjects with knee arthroplasty were asked to walk on a treadmill while a biplane fluoroscopic system (X-rays) and a stereophotogrammetric system (skin markers) recorded their knee movement. The RSTAM was defined as the rigid movement of the cluster of skin markers relative to the prosthesis. The results showed that RSTAM amplitude represents approximately 80-100% of the STA. The vertical axis of the anatomical frame of the femur was influenced the most by RSTAM. Combined with tibial error, internal/external rotation angle and distraction-compression were the knee kinematics parameters most affected by RSTAM during the gait cycle, with average rms values of 3.8° and 11.1 mm. This study highlighted higher RSTAM during the swing phase particularly in the thigh segment and suggests new features for RSTAM such as the particular shape of some RSTAM waveforms and the absence of RSTAM in certain kinematics during the gait phases. The comparison of coefficient of multiple correlations showed some similarities of RSTAM between subjects, while some correlations were found with gait speed and BMI. These new insights could potentially allow the development of new methods of compensation to avoid STA.
Resumo:
Résumé: La qualité de l'implantation d'une prothèse totale du genou est un facteur essentiel déterminant le résultat clinique à long terme. L'alignement postopératoire des membres inférieurs est considéré comme le facteur influençant le plus la survie à long terme d'une arthroplastie du genou. Au vu du haut degré de corrélation entre les complications post-opératoires et les malpositionnements prothétiques, les chirurgiens ont tenté de développer durant ces deux dernières décennies des instruments chirurgicaux améliorant la précision d'implantation. Depuis le début des années 90, de nouvelles instrumentations assistées par ordinateur ont été proposées. Actuellement, en chirurgie prothétique du genou, la plus utilisée de ces techniques est le système de navigation OrthoPilot® qui permet, grâce à une station de navigation et des émetteurs infrarouges, de contrôler en continu pendant l'opération, l'axe mécanique du membre inférieur et de vérifier la précision des coupes osseuses. Le but de cette étude de cohorte appareillée rétrospective est de comparer les résultats clinique et radiologiques de deux collectifs de patients (32 patients dans chaque groupe) comparables (âge, sexe, BMI, degré d'arthrose, recul postopératoire), opérés avec le même type de prothèse (prothèse à glissement tricompartimental postérieurement stabilisée), soit avec le système de navigation Orthopilot®, soit à l'aide de l'instrumentation ancillaire mécanique classique. Les résultats obtenus montrent que la technique chirurgicale supportée par le système de navigation Orthopilot® est fiable et aisément reproductible. Par rapport à l'instrumentation manuelle, l'instrumentation assistée améliore significativement la précision de pose du composant tibial dans le plan frontal. Cependant entre des mains expérimentées, la technique d'alignement mécanique classique, plus simple, reste performante (coût modique, temps opératoire plus court et sans risque de défaillance technique).
Resumo:
The present study was performed to investigate the possibility of 'aberrant' innervation of the tips of the hindlimb digits in the rat, i.e., from other sources than the femoral and the main sciatic branches (tibial, peroneal, sural). Cutaneous injections of fluorescent tracers in the digits were combined with either selective nerve transections to restrict afferent routes followed by detection of labeled neurons in dorsal root ganglia (DRGs), or by a delayed application of a second tracer to afferent nerves under study to detect double labeled neurons in DRGs. The results show that the tips of the digits were represented in DRGs L3-6. The femoral nerve afferents from digits 1 and 2 projected primarily to DRG L3 and to a smaller extent to DRG L4. A small number of neurons from primarily medial digits 1 and 2, but also from lateral digits 3-5, were found to project to DRGs L4 and L5 via a proximal branch that leaves the sciatic nerve near the sciatic notch and runs distally in the posterior part of the thigh, here called the musculocutaneous nerve of the hindlimb. We also have some evidence indicating innervation of the tips of the digits from the posterior cutaneous nerve of the thigh. Aberrant innervation such as that described here might contribute to remaining and perhaps abnormal sensibility after nerve injury and is of interest for the interpretation of results in experimental studies of collateral and regenerative sprouting after such injury
Resumo:
The growth of five variables of the tibia (diaphyseal length, diaphyseal length plus distal epiphysis, condylo-malleolar length, sagittal diameter of the proximal epiphysis, maximum breadth of the distal epiphysis) were analysed using polynomial regression in order to evaluate their significance and capacity for age and sex determination during and after growth. Data were collected from 181 (90♂ and 91♀) individuals ranging from birth to 25 years of age and belonging to three documented collections from Western Europe. Results indicate that all five variables exhibit linear behaviour during growth, which can be expressed by a first-degree polynomial function. Sexual significant differences were observed from age 15 onward in the two epiphysis measurements and condylo-malleolar length, suggesting that these three variables could be useful for sex determination in individuals older than 15 years. Strong correlation coefficients were identified between the five tibial variables and age. These results indicate that any of the studied tibial measurements is likely to serve as a useful source for estimating sub-adult age in both archaeological and forensic samples.
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
The improvement of the reliability of the contact between the osseous tissues and the implant materials has been tested by recovering the metallic implants with ceramic materials, usually calcium phosphates. In our study, the calcium phosphate recovering layers were deposited by means of a pulsed-laser deposition technique. Our aim was to to evaluate the tissue interactions established between cortical bone and titanium implants covered by five different layers, ranging from amorphous calcium phosphate to crystalline hydroxyapatite, obtained by altering the parameters of the laser ablation process. The surgical protocol of the study consisted in the simultaneous implantation of the five types of implants in both the tibial dyaphisis of three Beagle dogs, sacrificed respectively one, two and three months after the last surgical procedures. After the sacrifice, the samples were submitted to a scheduled procedure of embedding in plastic polymers without prior decalcification, in order to perform the ultrastructural studies: scanning microscopy with secondary and backscattered electrons (BS-SEM). Our observations show that both in terms of the calcified tissues appearing as a response to the presence of the different coatings and of time of recovering, the implants coated with crystalline calcium phosphate layers by laser ablation present a better result than the amorphous-calcium-phosphate-coated implants. Moreover, the constant presence of chondroid tissue, related with the mechanical induction by forces applied on the recovering area, strongly suggests that the mechanisms implied in osteointegration are related to endomembranous, rather than endochondral ossification processes
Resumo:
Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.
Resumo:
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.
Resumo:
Le but de cette thèse a été d'investiguer la relation entre, d'une part le temps de propagation de l'onde de pouls artérielle du coeur vers les membres inférieurs, et d'autre part le temps séparant, au niveau de l'aorte ascendante, la génération de l'onde antérograde du retour des ondes réfléchies. Le principe de la méthode employée a été de mesurer ces deux temps par deux méthodes indépendantes, ce en les faisant varier par changement rapide de la position du corps, chez sujets humains volontaires. Le facteur gravitationnel a en effet une influence majeure sur la pression transmurale des artères, dont dépend largement la vitesse de propagation des ondes de pouls, tant dans le sens antérograde que rétrograde. Vingt sujets jeunes, en bonne santé, dontIO hommes et 10 femmes, ont été examinés sur une table de tilt, dans deux positions différentes : tête vers le bas (angle de tilt : - 10°) et tête vers le haut (+45°).Dans chaque position, le temps de propagation carotido- femorale (Tcf, succédané du temps aorto-fémoral) et carotido-tibial (Tct, succédané du temps aorto-tibial) a été mesuré avec l'appareil Complior. De même, dans chaque position la pression aortique centrale a été enregistrée par tonométrie radiale en utilisant l'appareil SphygmoCor qui applique une fonction de transfert généralisé pour reconstruire la forme de l'onde de pouls aortique. L'analyse de celle-ci permet ensuite de calculer les temps d'aller-retour des ondes réfléchies atteignant l'aorte pendant la systole (début de l'onde réfléchie, sT1 r) et pendant la diastole (temps de transit moyen de l'onde diastolique réfléchie dMTT). Le changement de position de tête vers le haut à tête vers le bas, a provoqué une augmentation importante du temps de propagation Tct (chez le femmes de 130±10 à 185±18msec, P<0,001 et chez les hommes de 136±9 à 204±18msec P<0.001) ainsi que du temps moyen de transition de l'onde diastolique réfléchie dMTT (chez les femmes de 364±35 à 499±33msec P<0,001 et chez les hommes de 406±22 à 553±21msec, P<0,001). Un modèle de régression mixte montre qu'entre les deux positions, les variations de dMTT sont environ le double de celles de Tct (coefficient de régression 2.1; 95% intervalle de confiance 1.9-2,3, P<0,001). Ces résultats suggèrent que les ondes diastoliques observées dans l'onde de pouls aortique central reconstruites par tonométrie radiale, correspondent, du moins en partie, aux ondes réfléchies générées au niveau des membres inférieurs.
Resumo:
To test if the relationship between knee kinetics during walking and regional patterns of cartilage thickness is influenced by disease severity we tested the following hypotheses in a cross-sectional study of medial compartment osteoarthritis (OA) subjects: (1) the peak knee flexion (KFM) and adduction moments (KAM) during walking are associated with regional cartilage thickness and medial-to-lateral cartilage thickness ratios, and (2) the associations between knee moments and cartilage thickness data are dependent on disease severity. Seventy individuals with medial compartment knee OA were studied. Gait analysis was used to determine the knee moments and cartilage thickness was measured from magnetic resonance imaging. Multiple linear regression analyses tested for associations between cartilage thickness and knee kinetics. Medial cartilage thickness and medial-to-lateral cartilage thickness ratios were lower in subjects with greater KAM for specific regions of the femoral condyle and tibial plateau with no associations for KFM in patients of all disease severities. When separated by severity, the association between KAM and cartilage thickness was found only in patients with more severe OA, and KFM was significantly associated with cartilage thickness only for the less severe OA subjects for specific tibial plateau regions. The results support the idea that the KAM is larger in patients with more severe disease and the KFM has greater influence early in the disease process, which may lessen as pain increases with disease severity. Each component influences different regions of cartilage. Thus the relative contributions of both KAM and KFM should be considered when evaluating gait mechanics and the influence of any intervention for knee OA.
Resumo:
Peripheral nerve injury is typically associated with long-term disturbances in sensory localization, despite nerve repair and regeneration. Here, we investigate the extent of correct reinnervation by back-labeling neuronal soma with fluorescent tracers applied in the target area before and after sciatic nerve injury and repair in the rat. The subpopulations of sensory or motor neurons that had regenerated their axons to either the tibial branch or the skin of the third hindlimb digit were calculated from the number of cell bodies labeled by the first and/or second tracer. Compared to the normal control side, 81% of the sensory and 66% of the motor tibial nerve cells regenerated their axons back to this nerve, while 22% of the afferent cells from the third digit reinnervated this digit. Corresponding percentages based on quantification of the surviving population on the experimental side showed 91%, 87%, and 56%, respectively. The results show that nerve injury followed by nerve repair by epineurial suture results in a high but variable amount of topographically correct regeneration, and that proportionally more neurons regenerate into the correct proximal nerve branch than into the correct innervation territory in the skin