699 resultados para tetrahedral molybdate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O 99mTc é o radionuclídeo mais utilizado em medicina nuclear. No Brasil os geradores de 99Mo/99mTc são produzidos exclusivamente pelo Centro de Radiofarmácia do IPEN-CNEN/SP, com 99Mo importado de diferentes fornecedores. O 99Mo (t1/2 = 66 h), por ser um produto de fissão do 235U, pode conter impurezas radionuclídicas prejudiciais à saúde humana. Dessa forma, para que o gerador seja utilizado de forma segura, é necessário que o 99Mo seja avaliado por ensaios de controle de qualidade e atenda à alguma especificação descrita em farmacopeia. A Farmacopeia Europeia (FE) apresenta monografia, com parâmetros (identificação, pureza radioquímica e pureza radionuclídica), métodos de análise, e limites, para avaliação da qualidade da solução de [99Mo] na forma de molibdato de sódio, que é utilizada como matéria-prima no preparo dos geradores de 99Mo/99mTc. No entanto, observa-se uma dificuldade na implementação e execução dos métodos por parte dos produtores de geradores, com pouca literatura sobre o assunto, provavelmente devido à falta de praticidade dos métodos propostos e à extensa lista de reagentes utilizados. Nesse trabalho foram avaliados vários parâmetros de qualidade do 99Mo descritos na monografia da FE. Foram estudados métodos de separação do 99Mo de suas impurezas radionuclídicas por extração em fase sólida (SPE) e por TLC. Após separação por SPE, foi proposta a quantificação de metais por ICP-OES para avaliar a porcentagem de retenção de Mo e a porcentagem de recuperação de Ru e Te e Sr em diversos tipos de cartuchos, em substituição ao uso de radiotraçadores. Observou-se que a marca de cartucho de SPE para separação do 99Mo recomendada pela FE apresentou baixa recuperação para Ru, quando comparado aos outros cartuchos de troca aniônica disponíveis no mercado. Amostras de 99Mo de diferentes fornecedores mundiais foram analisadas. Observou-se que é possível realizar a quantificação de 103Ru em amostras de 99Mo mesmo com tempos de decaimento acima de 4 semanas. Um método alternativo de separação do 99Mo do 131I por TLC apresentou resultados promissores. Não foi feita a quantificação das impurezas radionuclídicas emissoras beta e alfa. Todas as amostras analisadas apresentaram resultados dentro das especificações da FE para pureza radioquímica (>95%) e pureza radionuclídica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytically active heterogeneous catalysts have been prepared via microwave deposition of iron oxide nanoparticles (0.5–1.2 wt%) on MCM-41 type silica materials with different morphologies (particles, helical and spheres). This methodology leads to iron oxide nanoparticles composed by a mixture of FeO and Fe2O3 species, being the Fe(II)/Fe(III) peak ratio near to 1.11 by XPS. DRUV spectroscopy indicates the presence of tetrahedral coordinated Fe3+ in the silica framework of the three catalysts as well as some extraframework iron species in the catalysts with particle and sphere-like morphologies. The loading of the nanoparticles does neither affect the mesopore arrangement nor the textural properties of the silica supports, as indicated by SAXS and nitrogen adsorption/desorption isotherms. A detailed investigation of the morphology of the supports in various microwave-assisted catalyzed processes shows that helical mesostructures provide optimum catalytic activities and improved reusabilities in the microwave-assisted redox (selective oxidation of benzyl alcohol) catalyzed process probably due to a combination of lower particle size and higher acidity in comparison with the supports with particle and sphere morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes an investigation in which we compare Ni(0), Ni(I) and Ni(II) complexes containing 1,3-bis(diphenylphosphino)propane (dppp) as a phosphine ligand for their abilities to effect three types of cross-coupling reactions: Buchwald-Hartwig Amination, Heck-Mizoroki, and Suzuki-Miyaura cross-coupling reactions with different types of substrates. The Ni(0) complex Ni(dppp)2 is known and we have synthesized it via a new procedure involving zinc reduction of the known NiCl2(dppp) in the presence of an excess of dppp. The Ni(0) complex was characterized by NMR spectroscopy and X-ray crystallography. Since Ni(I) complexes of dppp seem unknown, we have synthesized what at this stage appear to be NiXdpppn/[NiX(dppp)n]x (X = Cl, Br, I; n = 1,2, x = 1, 2) by comproportionation of molar equivalents of Ni(dppp)2 and NiX2dppp, X= Cl, Br, I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two quadrupole splitting doublets with delta E_q = 0.74 and 1.62 mm/s were found in the montmorillonite spectra. The more intense doublet corresponds to iron in a somewhat distorted tetrahedral coordination, while the less intense corresponds to quadri-coordinated iron. The EPR spectrum also exhibits two lines with a q-factor of 3 and 4.3, which corresponds to transformed minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mössbauer analyses were conducted on a sample of saponite selected from DSDP Leg 69 basalt core. The sample was initially placed within a nitrogen-purged container on-board Glomar Challenger approximately three hours after recovery, where it remained until analysis. The Mössbauer data revealed an original, in situ Fe2O3/FeO ratio of 0.46, with both Fe**2+ and Fe**3+ in octahedral coordination. With controlled exposure to air under ambient laboratory storage conditions, the proportion of Fe**3+ increased from an original 30% to 51% over a period of about 11.5 months. The Fe**3+ thus produced remained in octahedral coordination, and no observable changes occurred in the physical appearance of the sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic sulfate is essential for numerous functions in mammalian physiology. In the present study, we characterized the functional properties of the rat Na+-sulfate cotransporter NaS2 (rNaS2), determined its tissue distribution, and identified its gene (slc13a4) structure. Expression of rNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by phosphate, thiosulfate, tungstate, selenate, oxalate, and molybdate, but not by citrate, succinate, or DIDS. Transport kinetics of rNaS2 determined a K-M for sulfate of 1.26 mM. Na+ kinetics determined a Hill coefficient of n=3.0 +/- 0.7, suggesting a Na+:SO42- stoichiometry of 3:1. rNaS2 mRNA was highly expressed in placenta, with lower levels found in the brain and liver. slc13a4 maps to rat chromosome 4 and contains 17 exons, spanning over 46 kb in length. This gene produces two alternatively spliced transcripts, of which the transcript lacking exon 2 is the most abundant form. Its 5' flanking region contains CAAT- and GC-box motifs and a number of putative transcription factor binding sites, including GATA-1, SP1, and AP-2 consensus sequences. This is the first study to characterize rNaS2 transport kinetics, define its tissue distribution, and resolve its gene (slc13a4) structure and 5' flanking region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfate plays an essential role in human growth and development. Here, we characterized the functional properties of the human Na+-sulfate cotransporter (hNaS2), determined its tissue distribution, and identified its gene (SLC13A4) structure. Expression of hNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by thiosulfate, phosphate, molybdate. selenate and tungstate, but not by oxalate, citrate, succinate, phenol red or DIDS. Transport kinetics of hNaS2 determined a K, for sulfate of 0.38 mM, suggestive of a high affinity sulfate transporter. Na+ kinetics determined a Hill coefficient of 1.6 +/- 0.6, suggesting a Na: SO42- stoichiometry of 2:1. hNaS2 mRNA was highly expressed in placenta and testis, with intermediate levels in brain and lower levels found in the heart, thymus, and liver. The SLC13A4 gene contains 16 exons, spanning over 47 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs, and a number of putative transcription factor binding sites, including GATA-1, AP-1, and AP-2 consensus sequences. This is the first study to characterize hNaS2 transport kinetics, define its tissue distribution, and resolve its gene (SLC13A4) structure and 5' flanking region. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this PhD study, the effects of the cation substitutions on the physical properties of pyroxenes have been discussed. The results of this work extend the knowledge on pyroxenes with different chemical compositions. These properties might be used in the development of ceramic pigments, advanced materials and for the mineralogical phase identification. First of all, the crystallographic differences between Ge and Si pyroxenes have been examined. The structure of C2/c Ca rich Ge clinopyroxenes is very close to the low pressure C2/c structural configuration found in Ca-rich Si-pyroxenes. The shear of the unit cell is very similar, and the difference between a Ge end member and the corresponding Si-rich one is less than 1°. Instead, a remarkable difference exists between Ca-poor Si and Ge clinopyroxenes. First, Ca-poor Ge pyroxenes do not display a P21/c symmetry, but retain the C2/c symmetry; second, the observed C2/c structure shows, at room pressure, the configuration with highly kinked tetrahedral chains characteristic of the high pressure C2/c symmetry of Si Ca-poor pyroxenes. In orthopyroxenes, with Pbca symmetry, Ge-pyroxenes have volume larger than Si-pyroxenes. Samples along the system CaCoGe2O6 - CoCoGe2O6 have been synthesized at three different temperatures: 1050 °C, 1200 °C and 1250 °C. The aim of these solid state syntheses was to obtain a solid solution at ambient pressure, since the analogues Si-system needs high pressure. Unfortunately, very limited solution occurs because the structure forms of the two end member (high temperature for CaCoGe2O6 and high pressure CoCoGe2O6) are incompatible. The phase diagram of this system has been sketched and compared to that of Si. The cobalt end member (CoCoGe2O6) is stable at ambient pressure in two symmetries: at 1050 °C C2/c and 1200 °C Pbca. The impurity phase formed during these experiments is cobalt spinel. Raman spectroscopy has been used to investigate the vibrational properties of Ca-pyroxenes CaCoGe2O6, CaMgGe2O6, CaMgSi2O6 and CaCoSi2O6. A comparison between silicate and germanate pyroxenes shows significant changes in peak positions of the corresponding modes caused mainly by the difference of the Ge-Si atomic weight along with the distortion and compression of the coordination polyhedra. Red shift in Raman spectra of germanates has been calculated by a rough scale factor calculated by a simple harmonic oscillator model, considering the different bond lengths for 4-coordinated Si ~ 1.60- 1.65 Å vs Ge–O distance ~1.70 - 1.80 Å. The Raman spectra of CaMgGe2O6 and CaCoGe2O6 have been classified, in analogy with silicate (Wang et al., 2001) counterparts, in different ranges: - R1 (880-640 cm-1): strong T-O stretching modes of Ge and non-bridging O1 and O2 atoms within the GeO4 tetrahedron; - R2 (640-480 cm-1): stretching/bending modes of Ge-Obr-Ge bonds (chain stretching and chain bending); - R4 (480-360 cm-1): O-Ge-O vibrations; - R3 (360-240 cm-1): motions of the cations in M2 and M1 sites correlated with tetrahedral chain motion and tilting tetrahedra; - R5 (below 240 cm-1): lattice modes. The largest shift with respect to CaMgSi2O6 - CaCoSi2O6 is shown by the T-O stretching and chain modes. High-pressure Raman spectroscopy (up to about 8 GPa) on the same samples of Ca-pyroxenes using an ETH-type diamond anvil cell shows no phase transition within the P-ranges investigated, as all the peak positions vary linearly as a function of pressure. Our data confirm previous experimental findings on Si-diopside (Chopelas and Serghiou, 2000). In the investigated samples, all the Raman peaks shift upon compression, but the major changes in wavenumber with pressure are attributed to the chain bending (Ge-Obr-Ge bonds) and tetrahedra stretching modes (Ge-Onbr). Upon compression, the kinking angle, the bond lengths and T-T distances between tetrahedra decrease and consequently the wavenumber of the bending chain mode and tetrahedra stretching mode increases. Ge-pyroxenes show the higher P-induced peak-position shifts, being more compressible than corresponding silicates. The vibrational properties of CaM2+Ge2O6 (M2+ =Mg, Mn, Fe, Co, Ni, Zn) are reported for the first time. The wavenumber of Ge-Obr-Ge bending modes decreases linearly with increasing ionic radius of the M1 cation. No simple correlation has been found with M1 atomic mass or size or crystallographic parameters for the peak at ~850 cm-1 and in the low wavenumber regions. The magnetic properties of the system CaCoSi2O6 - CoCoSi2O6 have been investigated by magnetometry. The join is always characterized by 1 a.p.f.u. of cobalt in M1 site and this causes a pure collinear antiferromagnetic behaviour of the intra-chain superexchange interaction involving Co ions detected in all the measurements, while the magnetic order developed by the cobalt ions in M2 site (intra-chain) is affected by weak ferromagnetism, due to the non-collinearity of their antiferromagnetic interaction. In magnetically ordered systems, this non-collinearity effect promotes a spin canting of anti-parallel aligned magnetic moments and thus is a source of weak ferromagnetic behaviour in an antiferromagnetic. The weak ferromagnetism can be observed only for the samples with Co content higher than 0.5 a.p.f.u. in M2, when the concentration is sufficiently high to create a long range order along the M2 chain which is magnetically independent of M1 chain. The ferromagnetism was detected both in the M(T) at 10 Oe and M(H).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study gives a contribution to the knowledge on the Na-feldspar and plagioclases, extending the database of the Raman spectra of plagioclases with different chemical compositions and structural orders. This information may be used for the future planetary explorations by “rovers”, for the investigation of ceramics nanocrystal materials and for the mineralogical phase identification in sediments. Na-feldspar and plagioclase solid solution have been investigated by Raman spectroscopy in order to determine the relationships between the vibrational changes and the plagioclase crystal chemistry and structure. We focused on the Raman micro-spectroscopy technique, being a non-destructive method, suited for contactless analysis with high spatial resolution. Chemical and structural analyses have been performed on natural samples to test the usefulness of Raman spectroscopy as a tool in the study of the pressure-induced structural deformations, the disordering processes due to change in the Al-Si distribution in the tetrahedral sites and, finally, in the determination of the anorthitic content (Anx) in plagioclase minerals. All the predicted 39 Ag Raman active modes have been identified and assigned to specific patterns of atomic vibrational motion. A detailed comparison between experimental and computed Raman spectra has been performed and previous assignments have been revised, solving some discrepancies reported in recent literature. The ab initio calculation at the hybrid HF/DFT level with the WC1LYP Hamiltonian has proven to give excellent agreement between calculated and experimentally measured Raman wavenumbers and intensities in triclinic minerals. A short digression on the 36 infrared active modes of Na-feldspar has been done too. The identification of all 39 computed Raman modes in the experimentally measured spectra of the fully ordered Na-feldspar, known as low albite, along with the detailed description of each vibrational mode, has been essential to extend the comparative analysis to the high pressure and high temperature structural forms of albite, which reflect the physical–chemical conditions of the hosting rocks. The understanding of feldspar structure response to pressure and temperature is crucial in order to constrain crustal behaviour. The compressional behaviour of the Na-feldspar has been investigated for the first time by Raman spectroscopy. The absence of phase transitions and the occurrence of two secondary compression mechanisms acting at different pressures have been confirmed. Moreover, Raman data suggest that the internal structural changes are confined to a small pressure interval, localized around 6 GPa, not spread out from 4 to 8 GPa as suggested by previous X-rays studies on elasticity. The dominant compression mechanisms act via tetrahedral tilting, while the T-O bond lengths remain nearly constant at moderate compressional regimes. At the spectroscopic level, this leads to the strong pressure dependencies of T-O-T bending modes, as found for the four modes at 478, 508, 578 and 815 cm-1. The Al-Si distribution in the tetrahedral sites affects also the Raman spectrum of Na-feldspar. In particular, peak broadening is more sensitive than peak position to changes in the degree of order. Raman spectroscopy is found to be a good probe for local ordering, in particular being sensitive to the first annealing steps, when the macroscopic order parameter is still high. Even though Raman data are scattered and there are outliers in the estimated values of the degree of order, the average peak linewidths of the Na-feldspar characteristic doublet band, labelled here as υa and υb, as a function of the order parameter Qod show interesting trends: both peak linewidths linearly increase until saturation. From Qod values lower than 0.6, peak broadening is no more affected by the Al-Si distribution. Moreover, the disordering process is found to be heterogeneous. SC-XRD and Raman data have suggested an inter-crystalline inhomogeneity of the samples, i.e., the presence of regions with different defect density on the micrometric scale. Finally, the influence of Ca-Na substitution in the plagioclase Raman spectra has been investigated. Raman spectra have been collected on a series of well characterized natural, low structural plagioclases. The variations of the Raman modes as a function of the chemical composition and the structural order have been determined. The number of the observed Raman bands at each composition gives information about the unit-cell symmetry: moving away from the C1 structures, the number of the Raman bands enhances, as the number of formula units in the unit cell increases. The modification from an “albite-like” Raman spectrum to a more “anorthite-like” spectrum occurs from sample An78 onwards, which coincides with the appearance of c reflections in the diffraction patterns of the samples. The evolution of the Raman bands υa and υb displays two changes in slope at ~An45 and ~An75: the first one occurs between e2 and e1 plagioclases, the latter separates e1 and I1 plagioclases with only b reflections in their diffraction patterns from I1 and P1 samples having b and c reflections too. The first variation represents exactly the e2→e1 phase transitions, whereas the second one corresponds in good approximation to the C1→I1 transition, which has been determined at ~An70 by previous works. The I1→P1 phase transition in the anorthite-rich side of the solid solution is not highlighted in the collected Raman spectra. Variations in peak broadening provide insights into the behaviour of the order parameter on a local scale, suggesting an increase in the structural disorder within the solid solution, as the structures have to incorporate more Al atoms to balance the change from monovalent to divalent cations. All the information acquired on these natural plagioclases has been used to produce a protocol able to give a preliminary estimation of the chemical composition of an unknown plagioclase from its Raman spectrum. Two calibration curves, one for albite-rich plagioclases and the other one for the anorthite-rich plagioclases, have been proposed by relating the peak linewidth of the most intense Raman band υa and the An content. It has been pointed out that the dependence of the composition from the linewidth can be obtained only for low structural plagioclases with a degree of order not far away from the references. The proposed tool has been tested on three mineralogical samples, two of meteoric origin and one of volcanic origin. Chemical compositions by Raman spectroscopy compare well, within an error of about 10%, with those obtained by elemental techniques. Further analyses on plagioclases with unknown composition will be necessary to validate the suggested method and introduce it as routine tool for the determination of the chemical composition from Raman data in planetary missions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole set of the nickel(II) complexes with no derivatized edta-type hexadentate ligands has been investigated from their structural and electronic properties. Two more complexes have been prepared in order to complete the whole set: trans(O5)-[Ni(ED3AP)]2- and trans(O5O6)-[Ni(EDA3P)]2- complexes. trans(O5) geometry has been verified crystallographically and trans(O5O6) geometry of the second complex has been predicted by the DFT theory and spectral analysis. Mutual dependance has been established between: the number of the five-membered carboxylate rings, octahedral/tetrahedral deviation of metal-ligand/nitrogen-neighbour-atom angles and charge-transfer energies (CTE) calculated by the Morokuma’s energetic decomposition analysis; energy of the absorption bands and HOMO–LUMO gap.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromium chalcogenide spinels, MCr2X4 (M = Zn, Cd, Hg; X = O, S, Se), have been the subject of considerable interest in recent years. In each case the crystal structure is that of a normal spinel with the chromium ions exclusively occupying the octahedral (B) sites, so that when diamagnetic ions are located at the tetrahedral (A) sites the only magnetic interactions present are those between B-site ions. Despite such apparently simple circumstances a rich variety of magnetic behaviour is exhibited. For the oxides the ground state spin configurations are antiferromagnetic whilst for the selenides ferromagnetic interactions dominate and several authors have drawn attention to the fact that the nature of the dominant interaction is a function of the nearest neighbour chromium - chromium separation. However, at least two of the compounds exhibit spiral structures and it has been proved difficult to account for the various spin configurations within a unified theory of the magnetic interactions involved. More recently, the possibility of formulating a simplified interpretation of the magnetic interactions has been provided by the discovery that the crystal struture of spinels does not always conform to the centrosymmetrical symmetry Fd3m that has been conventionally assumed. The deviation from this symmetry is associated with small < 111> displacements of the octahedrally coordinated metal ions and the structures so obtained are more correctly referred to the non-centrosymmetrical space group F43m. In the present study, therefore, extensive X-ray diffraction data have been collected from four chromium chalcogenide specimens and used to refine the corresponding structural parameters assuming F43m symmetry and also with conventional symmetry. The diffracted intensities from three of the compounds concerned cannot be satisfactorily accounted for on the basis of conventional symmetry and new locations have been found for the chromium ions in these cases. It is shown, however, that these displacements in chromium positions only partially resolve the difficulties in interpreting the magnetic behaviour. A re-examination of the magnetic data from different authors indicates much greater uncertainty in their measurements than they had claimed. By taking this into consideration it is shown that a unified theory of magnetic behaviour for the chromium chalcogenide spinels is a real possibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of natural magnetite has been investigated on the basis of previously published X-ray intensity data and a newly acquired, more extensive data base. Both investigations show that the structure does not conform to the centrosymmetrical space group Fd3m, as is normally assumed, but the non-centrosymmetrical space group F43m. The structure refinement provides values for the atom positions, anisotropic thermal parameters and bond lengths. A study of Friedel related pairs of X-ray intensities shows that Friedel's law is violated in magnetite, further confirming that the space group is non-centrosymmetrical. It was found that the octahedral site cations in magnetite do not occupy special positions at the centres of the octahedral interstices as they should under the space group Fd3m, but are displaced along <111 > directions leading to F43m symmetry. A mechanism is known for the origin of these displacements and the likelihood of similar displacements occurring in other natural and synthetic spinels is discussed. The crystal structure of a natural titanomaghemite was determined by a combination of X-ray diffraction and Mõssbauer spectroscopy. This was confirmed as possessing a primitive cubic Bravais lattice with the space group P4332 and the structural formula: Fe3+.0.96 0 0.04 [Fe2+0.23 Fe3+0.99 Ti4+0.42 0 0.37 ] 042 - where 0 represents a cation vacancy. As the above formula shows, there are cation vacancies on both tetrahedral arrl octahedral sites, the majority being restricted to octahedral sltes. No tetrahedral site Fe2+ or Ti4+ was observed. Values for the atom positions, anisotropic thermal parameters and bond lengths have been determined for this particular specimen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of isotope substitution in neutron diffraction was used to measure the structure of liquid ZnCl2 at 332(5)?°C and glassy ZnCl2 at 25(1)?°C. The partial structure factors were obtained from the measured diffraction patterns by using the method of singular value decomposition and by using the reverse Monte Carlo procedure. The partial structure factors reproduce the diffraction patterns measured by high-energy x-ray diffraction once a correction for the resolution function of the neutron diffractometer has been made. The results show that the predominant structural motif in both phases is the corner sharing ZnCl4 tetrahedron and that there is a small number of edge-sharing configurations, these being more abundant in the liquid. The tetrahedra organize on an intermediate length scale to give a first sharp diffraction peak in the measured diffraction patterns at a scattering vector kFSDP?1 Å-1 that is most prominent for the Zn-Zn correlations. The results support the notion that the relative fragility of tetrahedral glass forming MX2 liquids is related to the occurrence of edge-sharing units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The X-ray crystal structures of two related trans-N2S2 copper macrocycles are reported. One was isolated with the copper in the divalent form and the other with copper in its univalent form affording a valuable insight into the changes of geometry and metrical parameters that occur during redox processes in macrocyclic copper complexes. A variable temperature NMR study of the copper(I) complex is reported, indicative of a chair-boat conformational change within the alkyl chain backbone of the macrocycle. It was possible to extract the relevant kinetic and thermodynamic parameters (?G‡, 57.8 kJ mol-1; ?H‡, 52.1 kJ mol-1; ?S‡, -19.2 J K-1 mol-1) for this process at 298 K. DFT molecular orbital calculations were used to confirm these observations and to calculate the energy difference (26.2 kJmol-1) between the copper(I) macrocycle in a planar and a distorted tetrahedral disposition.