950 resultados para tensor tomography
Resumo:
Traumatic lesions of the subcutaneous fatty tissue provide important clues for forensic reconstruction. The interpretation of these patterns requires a precise description and recording of the position and extent of each lesion. During conventional autopsy, this evaluation is performed by dissecting the skin and subcutaneous tissues in successive layers. In this way, depending on the force and type of impact (right angle or tangent), several morphologically distinct stages of fatty tissue damage can be differentiated: perilobular hemorrhage (I), contusion (II), or disintegration (III) of the fat lobuli, and disintegration with development of a subcutaneous cavity (IV). In examples of virtopsy cases showing blunt trauma to the skin and fatty tissue, we analyzed whether these lesions can also be recorded and classified using multislice computed tomography (MSCT) and magnetic resonance imaging (MRI). MSCT has proven to be a valuable screening method to detect the lesions, but MRI is necessary in order to properly differentiate and classify the grade of damage. These noninvasive radiological diagnostic tools can be further developed to play an important role in forensic examinations, in particular when it comes to evaluating living trauma victims.
Resumo:
PURPOSE: To test the reproducibility of retinal thickness measurements in healthy volunteers of a new Frequency-domain optical coherence tomography (OCT) device (Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany). DESIGN: Prospective, observational study. METHODS: Forty-one eyes of 41 healthy subjects were included into the study. Intraobserver reproducibility was tested with 20 x 15 degree raster scans consisting of 37 high-resolution line scans that were repeated three times by one examiner (M.N.M.). Mean retinal thickness was calculated for nine areas corresponding to the Early Treatment Diabetic Retinopathy Study (ETDRS) areas. Coefficients of variation (COV) were calculated. RESULTS: Retinal thickness measurements were highly reproducible for all ETDRS areas. Mean total retinal thickness was 342 +/- 15 microm. Mean foveal thickness was 286 +/- 17 microm. COVs ranged from 0.38% to 0.86%. Lowest COV was found for the temporal outer ETDRS area (area 7; COV, 0.38%). Highest COV was found for the temporal inner ETDRS area (area 3; COV, 0.86%). Mean difference between measurement 1 and 2, measurement 1 and 3, and measurement 2 and 3 for all ETDRS areas was 1.01 microm, 0.98 microm, and 0.99 microm, respectively. CONCLUSION: Spectralis OCT retinal thickness measurements in healthy volunteers showed excellent intraobserver reproducibility with virtually identical results between retinal thickness measurements performed by one operator.
Resumo:
Previous MRI-volumetric studies in schizophrenic psychoses have demonstrated more or less pronounced volume reductions of the hippocampus in patients. Correspondingly, neuropathological examinations on the brains of schizophrenics showed diverse structural changes of the hippocampus. Employing a high-resolution 3D-MPRAGE sequence, we found volume reductions in most hippocampal subregions of schizophrenic patients, which, however, did not reach significant levels. An analysis of co-registered diffusion tensor imaging (DTI) data revealed significant alterations of the inter-voxel coherences in single hippocampal subdivisions of these patients, supporting the assumption of characteristic microstructural tissue changes relevant for the pathogenesis of schizophrenic psychoses. Our results argue for the usage of additional MRI modalities like DTI in order to detect subtle regional alterations of hippocampal structure in schizophrenics.
Resumo:
Doppler Optical Coherence Tomography (DOCT) is a biomedical imaging technique that allows simultaneous structural imaging and flow monitoring inside biological tissues and materials with spatial resolution in the micrometer scale. It has recently been applied to the characterization of microfluidic systems. Structural and flow imaging of novel microfluidics platforms for cytotoxicologic applications were obtained with a real-time, Near Infrared Spectral Domain DOCT system. Characteristics such as flow homogeneity in the chamber, which is one of the most important parameters for cell culture, are investigated. OCT and DOCT images were used to monitor flow inside a specific platform that is based on microchannel division for a better flow homogeneity. In particular, the evolution of flow profile at the transition between the microchannel structure and the chamber is studied.
Resumo:
In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.
Resumo:
Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.
Resumo:
Functional imaging of brain electrical activity was performed in nine acute, neuroleptic-naive, first-episode, productive patients with schizophrenia and 36 control subjects. Low-resolution electromagnetic tomography (LORETA, three-dimensional images of cortical current density) was computed from 19-channel of electroencephalographic (EEG) activity obtained under resting conditions, separately for the different EEG frequencies. Three patterns of activity were evident in the patients: (1) an anterior, near-bilateral excess of delta frequency activity; (2) an anterior-inferior deficit of theta frequency activity coupled with an anterior-inferior left-sided deficit of alpha-1 and alpha-2 frequency activity; and (3) a posterior-superior right-sided excess of beta-1, beta-2 and beta-3 frequency activity. Patients showed deviations from normal brain activity as evidenced by LORETA along an anterior-left-to-posterior-right spatial axis. The high temporal resolution of EEG makes it possible to specify the deviations not only as excess or deficit, but also as inhibitory, normal and excitatory. The patients showed a dis-coordinated brain functional state consisting of inhibited prefrontal/frontal areas and simultaneously overexcited right parietal areas, while left anterior, left temporal and left central areas lacked normal routine activity. Since all information processing is brain-state dependent, this dis-coordinated state must result in inadequate treatment of (externally or internally generated) information.
Resumo:
Objectives: Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Methods: Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Results: Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. Conclusions: These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.