943 resultados para temporal and spatial pattern
Resumo:
Optical mapping of voltage signals has revolutionised the field and study of cardiac electrophysiology by providing the means to visualise changes in electrical activity at a high temporal and spatial resolution from the cellular to the whole heart level under both normal and disease conditions. The aim of this thesis was to develop a novel method of panoramic optical mapping using a single camera and to study myocardial electrophysiology in isolated Langendorff-perfused rabbit hearts. First, proper procedures for selection, filtering and analysis of the optical data recorded from the panoramic optical mapping system were established. This work was followed by extensive characterisation of the electrical activity across the epicardial surface of the preparation investigating time and heart dependent effects. In an initial study, features of epicardial electrophysiology were examined as the temperature of the heart was reduced below physiological values. This manoeuvre was chosen to mimic the temperatures experienced during various levels of hypothermia in vivo, a condition known to promote arrhythmias. The facility for panoramic optical mapping allowed the extent of changes in conduction timing and pattern of ventricular activation and repolarisation to be assessed. In the main experimental section, changes in epicardial electrical activity were assessed under various pacing conditions in both normal hearts and in a rabbit model of chronic MI. In these experiments, there was significant changes in the pattern of electrical activation corresponding with the changes in pacing regime. These experiments demonstrated a negative correlation between activation time and APD, which was not maintained during ventricular pacing. This suggests that activation pattern is not the sole determinant of action potential duration in intact hearts. Lastly, a realistic 3D computational model of the rabbit left ventricle was developed to simulate the passive and active mechanical properties of the heart. The aim of this model was to infer further information from the experimental optical mapping studies. In future, it would be feasible to gain insight into the electrical and mechanical performance of the heart by simulating experimental pacing conditions in the model.
Resumo:
The under-reporting of cases of infectious diseases is a substantial impediment to the control and management of infectious diseases in both epidemic and endemic contexts. Information about infectious disease dynamics can be recovered from sequence data using time-varying coalescent approaches, and phylodynamic models have been developed in order to reconstruct demographic changes of the numbers of infected hosts through time. In this study I have demonstrated the general concordance between empirically observed epidemiological incidence data and viral demography inferred through analysis of foot-and-mouth disease virus VP1 coding sequences belonging to the CATHAY topotype over large temporal and spatial scales. However a more precise and robust relationship between the effective population size (
Resumo:
Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.
Resumo:
Resumo:
Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.
Resumo:
Environmental samples were collected at three surface water sites between 5/21/2011 and 11/21/2014 along the Upper Boulder River near Boulder Montana. The sites were located at Bernice (within the mountain block), near the High Ore drainage (near the mountain block/basin transition), and at the USGS Gauging Station near Boulder, Montana (within the basin). The parameters measured in the field were SC, temperature, and alkalinity with occasional pH measurements. We collected samples for anions, cations, and stable isotopes in the catchment. We identified endmembers by sampling snow and groundwater and determined from available data an approximate endmember for rain, snow, and groundwater. We used temporal and spatial variations of water chemistry and isotopes to generate an endmember mixing model. Groundwater was found to always be an important contributor to river flow and could increase by nearly an order of magnitude during large snowmelt events. This resulted in groundwater comprising ~20% of total river flow during snowmelt at all sites. At peak snowmelt we observed that near surface water contributions to the river were from a mixture of rain and snow. Soil water, though not sampled, was hypothesized to be an important part of the hydrologic story. If so, the endmember contributions determined in this study may be different. Groundwater may have the highest variation depending on water chemistry of shallow soil water.
Resumo:
Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose. Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application. This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the “useful ablation efficiency” for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.
Resumo:
Recreational shore angling in the Atlantic Ocean between Moledo and Aveiro (Portugal) was examined using roving creel surveys (March/September 2001). Cooperation was high (90% of 2310 anglers approached). At least 39 species of fish were caught at a rate of approximately 0.5 fish angler h(-1). An estimated 7319 kg of Dicentrarchus labrax (L.), with 45.6% below the minimum legal size, and 2040 kg of sea breams (genus Diplodus), correspond to 5.75% and 1.19% of the commercial landings in the same geographical area, respectively. The results shed light on a number of issues relevant to integrated coastal management, including temporal and spatial distribution of fishing effort, species caught, sizes of fish, catch rates, and factors influencing catches and angler satisfaction. Whilst the results suggest that the catches of sea breams and sea bass by day-time recreational shore angling in northern Portugal are small compared with commercial fishing, other recreational activities, such as boat fishing and spear-fishing, must be assessed.
Resumo:
We recorded the number of terrestrial mammal species in each Argentinian province, and the number of species belonging to particular groups (Marsupialia, Placentaria, and among the latter, Xenarthra, Carnivora, Ungulates and Rodentia). We performed multiple regressions of each group’s SR on environmental, human and spatial variables, to determine the amounts of variation explained by these factors. We then used a variance partitioning procedure to specify which proportion of the variation in SR is explained by each of the three factors exclusively and which proportions are attributable to interactions between factors.
Resumo:
Non-perennial rivers and streams (NPRS) cover >50% of the global river network. They are particularly predominant in Mediterranean Europe as a result of dry climate conditions, climate change and land use development. Historically, both scientists and policy makers underestimated the importance of NRPS for nature and humans alike, mainly because they have been considered as systems of low ecological and economic value. During the past decades, diminishing water resources have increased the spatial and temporal extent of artificial NPRS as well as their exposure to multiple stressors, which threatening their ecological integrity, biodiversity and ecosystem services. In this paper, we provide a comprehensive overview of the structural and functional characteristics of NPRS in the European Mediterranean, and discuss gaps and problems in their management, concerning their typology, ecological assessment, legislative and policy protection, and incorporation in River Basin Management Plans. Because NPRS comprise highly unstable ecosystems, with strong and often unpredictable temporal and spatial variability - at least as far as it is possible to assess - we outline the future research needs required to better understand, manage and conserve them as highly valuable and sensitive ecosystems. Efficient collaborative activities among multidisciplinary research groups aiming to create innovative knowledge, water managers and policy makers are urgently needed in order to establish an appropriate methodological and legislative background. The incorporation of NPRS in EU-Med River Basin Management Plans in combination with the application of ecological flows is a first step towards enhancing NPRS management and conservation in order to effectively safeguard these highly valuable albeit threatened ecosystems
Resumo:
Background:In vitrocell suspension cultivation systems have been largely reported assafe and standardized methods for production of secondary metabolites with medicinaland agricultural interest.Capsicum annuumis one of the most widely grown vegetablein the world and its biological activities have been demonstrated against insects, fungi,bacteria and other groups of organisms. The determination of procedures for thededifferentiation of cells into callus cells and the subsequent study of the callus growthpattern are necessary for the establishment of cellsuspensions and also to subsidizestudies regarding the bioactivity of its secondarymetabolites. To date, no study hasdescribed the development of protocols for callus induction inC. annuumL. cv. Etna. Objective:The objective of this study was to establish a protocol for dedifferentiationof leaf cells of the cultivarC. annuumcv. Etna and to determine the growth pattern ofthe calluses with a focus on the deceleration phase, when the callus cells must besubcultured into a liquid medium in order to establish cell suspension cultivationsaiming at the production of secondary metabolites.Results:The treatment that resultedin the highest %CI, ACCC and callus weight was thecombination of 4.52 μ M 2,4-D +0.44 μ M BA. The calluses produced were friable andwhitish and their growth patternfollowed a sigmoid shape. The deceleration phase started on the 23rdday of cultivation.Conclusion:Callus induction in leaf explants ofC. annuumcv. Etnacan be achieved inMS medium supplemented with 4.52 μ M 2,4-D + 0.44 μ MBA, which results in highcellular proliferation; in order to start a cell suspension culture, callus cells on the 23rdday of culture should be used.
Resumo:
This thesis tries to further our understanding for why some countries today are more prosperous than others. It establishes that part of today's observed variation in several proxies such as income or gender inequality have been determined in the distant past. Chapter one shows that 450 years of (Catholic) Portuguese colonisation had a long-lasting impact in India when it comes to education and female emancipation. Furthermore I use a historical quasi-experiment that happened 250 years ago in order to show that different outcomes have different degrees of persitence over time. Educational gaps between males and females seemingly wash out a few decades after the public provision of schools. The male biased sex-ratios on the other hand stay virtually unchanged despite governmental efforts. This provides evidence that deep rooted son preferences are much harder to overcome, suggesting that a differential approach is needed to tackle sex-selective abortion and female neglect. The second chapter proposes improvements for the execution of Spatial Regression Discontinuity Designs. These suggestions are accompanied by a full-fledged spatial statistical package written in R. Chapter three introduces a quantitative economic geography model in order to study the peculiar evolution of the European urban system on its way to the Industrial Revolution. It can explain the shift of economic gravity from the Mediterranean towards the North-Sea ("little divergence"). The framework provides novel insights on the importance of agricultural trade costs and the peculiar geography of Europe with its extended coastline and dense network of navigable rivers.
Resumo:
There are many diseases that affect the thyroid gland, and among them are carcinoma. Thyroid cancer is the most common endocrine neoplasm and the second most frequent cancer in the 0-49 age group. This thesis deals with two studies I conducted during my PhD. The first concerns the development of a Deep Learning model to be able to assist the pathologist in screening of thyroid cytology smears. This tool created in collaboration with Prof. Diciotti, affiliated with the DEI-UNIBO "Guglielmo Marconi" Department of Electrical Energy and Information Engineering, has an important clinical implication in that it allows patients to be stratified between those who should undergo surgery and those who should not. The second concerns the application of spatial transcriptomics on well-differentiated thyroid carcinomas to better understand their invasion mechanisms and thus to better comprehend which genes may be involved in the proliferation of these tumors. This project specifically was made possible through a fruitful collaboration with the Gustave Roussy Institute in Paris. Studying thyroid carcinoma deeply is essential to improve patient care, increase survival rates, and enhance the overall understanding of this prevalent cancer. It can lead to more effective prevention, early detection, and treatment strategies that benefit both patients and the healthcare system.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.
Resumo:
In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.