941 resultados para synsedimentary faults


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is presented an integrated geophysical investigation of the spatial distribution of faults and deformation bands (DB´s) in a faulted siliciclastic reservoir analogue, located in Tucano Basin, Bahia State, northeastern Brazil. Ground Penetrating Radar (GPR) and permeability measurements allowed the analysis of the influence of DB´s in the rock permeability and porosity. GPR data were processed using a suitable flow parametrization in order to highlight discontinuities in sedimentary layers. The obtained images allowed the subsurface detection of DB´s presenting displacements greater that 10 cm. A good correlation was verified between DB´s detected by GPR and those observed in surface, the latter identified using conventional structural methods. After some adaptations in the minipermeameter in order to increase measurement precision, two approaches to measure permeabilities were tested: in situ and in collected cores. The former approach provided better results than the latter and consisted of scratching the outcrop surface, followed by direct measurements on outcrop rocks. The measured permeability profiles allowed to characterize the spatial transition from DB´s to undeformed rock; variation of up to three orders of magnitude were detected. The permeability profiles also presented quasi-periodic patterns, associated with textural and granulometric changes, possibly associated to depositional cycles. Integrated interpretation of the geological, geophysical and core data, provided the subsurface identification of an increase in the DB´s number associated with a sedimentary layer presenting granulometric decrease at depths greater than 8 m. An associated sharp decrease in permeability was also measured in cores from boreholes. The obtained results reveal that radagrams, besides providing high resolution images, allowing the detection of small structures (> 10 cm), also presented a correlation with the permeability data. In this way, GPR data may be used to build upscaling laws, bridging the gap between outcrop and seismic data sets, which may result in better models for faulted reservoirs

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural framework of the sedimentary basins usually plays an important role in oil prospects and reservoirs. Geometry, interconectivity and density of the brittle features developed during basin evolution could change the permo-porous character of the rocks involved in generation, migration and entrapment of fluid flow. Once the structural characterization of the reservois using only sub-surface data is not an easy task, many studies are focused in analogous outcrops trying to understand the main processes by which brittle tectonic is archieved. In the Santana do Acaraú region (Ceará state, NE Brazil) a pack of conglomeratic sandstone (here named CAC) has its geometry controlled mainly by NE trending faults, interpreted as related to reactivation of a precambrian Sobral Pedro II Lineament (LSP-II). Geological mapping of the CAC showed a major NE-SW trending synform developed before its complete lithification during a dextral transpression. This region was then selected to be studied in details in order of constrain the cretaceous deformation and so help the understanding the deformation of the basins along the brazilian equatorial margin. In order to characterize the brittle deformation in different scales, I study some attributes of the fractures and faults such as orientation, density, kinematic, opening, etc., through scanlines in satellite images, outcrops and thin sections. The study of the satellite images showed three main directions of the macrostructures, N-S, NE-SW and E-W. Two of theses features (N-S and E-W) are in aggreement with previous geophysical data. A bimodal pattern of the lineaments in the CAC´s basement rocks has been evidenciated by the NE and NW sets of structures obtained in the meso and microscale data. Besides the main dextral transpression two others later events, developed when the sediments were complety lithified, were recognized in the area. The interplay among theses events is responsible for the compartimentation of the CAC in several blocks along within some structural elements display diferents orientations. Based on the variation in the S0 orientation, the CAC can be subdivided in several domains. Dispite of the variations in orientations of the fractures/faults in the diferents domains, theses features, in the meso and microscopic scale, are concentrated in two sets (based on their trend) in all domains which show similar orientation of the S0 surface. Thus the S0 orientation was used to group the domains in three major sets: i) The first one is that where S0 is E-W oriented: the fractures are oriented mainly NE with the development of a secondary NW trending; ii) S0 trending NE: the fractures are concentrated mainly along the trend NW with a secondary concentration along the NE trend; iii) The third set, where S0 is NS the main fractures are NE and the secondary concentration is NW. Another analized parameter was the fault/fracture length. This attribute was studied in diferent scales trying to detect the upscale relationship. A terrain digital model (TDM) was built with the brittlel elements supperposed. This model enhanced a 3D visualization of the area as well as the spatial distribution of the fault/fractures. Finally, I believe that a better undertanding of the brittle tectonic affecting both CAC and its nearby basement will help the future interpretations of the tectonic envolved in the development of the sedimentary basins of the brazilian equatorial margin and their oil reservoirs and prospects, as for instance the Xaréu field in the Ceará basin, which subsurface data could be correlated with the surface ones

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geological modeling allows, at laboratory scaling, the simulation of the geometric and kinematic evolution of geological structures. The importance of the knowledge of these structures grows when we consider their role in the creation of traps or conduits to oil and water. In the present work we simulated the formation of folds and faults in extensional environment, through physical and numerical modeling, using a sandbox apparatus and MOVE2010 software. The physical modeling of structures developed in the hangingwall of a listric fault, showed the formation of active and inactive axial zones. In consonance with the literature, we verified the formation of a rollover between these two axial zones. The crestal collapse of the anticline formed grabens, limited by secondary faults, perpendicular to the extension, with a curvilinear aspect. Adjacent to these faults we registered the formation of transversal folds, parallel to the extension, characterized by a syncline in the fault hangingwall. We also observed drag folds near the faults surfaces, these faults are parallel to the fault surface and presented an anticline in the footwall and a syncline hangingwall. To observe the influence of geometrical variations (dip and width) in the flat of a flat-ramp fault, we made two experimental series, being the first with the flat varying in dip and width and the second maintaining the flat variation in width but horizontal. These experiments developed secondary faults, perpendicular to the extension, that were grouped in three sets: i) antithetic faults with a curvilinear geometry and synthetic faults, with a more rectilinear geometry, both nucleated in the base of sedimentary pile. The normal antithetic faults can rotate, during the extension, presenting a pseudo-inverse kinematics. ii) Faults nucleated at the top of the sedimentary pile. The propagation of these faults is made through coalescence of segments, originating, sometimes, the formation of relay ramps. iii) Reverse faults, are nucleated in the flat-ramp interface. Comparing the two models we verified that the dip of the flat favors a differentiated nucleation of the faults at the two extremities of the mater fault. V These two flat-ramp models also generated an anticline-syncline pair, drag and transversal folds. The anticline was formed above the flat being sub-parallel to the master fault plane, while the syncline was formed in more distal areas of the fault. Due the geometrical variation of these two folds we can define three structural domains. Using the physical experiments as a template, we also made numerical modeling experiments, with flat-ramp faults presenting variation in the flat. Secondary antithetic, synthetic and reverse faults were generated in both models. The numerical modeling formed two folds, and anticline above the flat and a syncline further away of the master fault. The geometric variation of these two folds allowed the definition of three structural domains parallel to the extension. These data reinforce the physical models. The comparisons between natural data of a flat-ramp fault in the Potiguar basin with the data of physical and numerical simulations, showed that, in both cases, the variation of the geometry of the flat produces, variation in the hangingwall geometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Araripe Basin is located over Precambrian terrains of the Borborema Province, being part of Northeast Brazil inner basins. Its origin is related to the fragmentation of the Gondwana supercontinent and consequently opening of South Atlantic during early Cretaceous. The basin has a sedimentary infill encompassing four distinct evolution stages, comprising Paleozoic syneclisis, pre-rift, rift and post-rift. The target of this study comprises the post-rift section of the basin focusing deformational styles which affect evaporates from Ipubi Member of the Santana Formation, which is composed by gypsum and anidrite layers interbedded with shales. These units occur widespread across the basin. In the central part of the basin, near Nova Olinda-Santana do Cariri, evaporites are affected by an essentialy brittle deformation tipified by fibrous gypsum filled fractures, cutting massive layers of gypsum and anidrite. Veins with variable orientations and dips are observed in the region distributed over three main populations: i) a dominant NWSE with shallow to moderate NE dipping population, consisting of gypsum filled veins in which fibers are normal to vein walls; i) NE-SW veins with moderate SE dips containing subhorizontal growth fibers; and iii) N-S veins with shallow E-W dips with fibers oblique to vein walls. In the west portion of the basin, near Trindade-Ipubi-Araripina towns, evaporate layers are dominantly constituted by gypsum/anidrite finely stratified, showing a minor density of veins. These layers are affected by a unique style of deformation, more ductile, typified by gentle to open horizontal normal folding with several tens of meters length and with double plunging NW-SE or NE-SW hinges, configuring domic features. In detail, gypsum/anidrite laminae are affected by metre to decimeter scale close to tight folding, usually kinked, with broken hinges, locally turning into box folds. Veins show NE-SW main directions with shallow NE dips, growth fibers are parallel to vein walls, constituting slickenfibers. This region is marked by faults that affect Araripina Formation with NW-SE, NE-SW and E-W directions. The main structural styles and general orientations of structures which affected the post-rift section of Araripe Basin yielded important kinematic information analysis which led us to infer a E-W to NE-SW extension direction to the northeastern part of the Basin, whereas in the southeastern part, extension occurred in N-S direction. Thus, it was possible to determine a regional kinematic setting, through this analysis, characterizing a NE-SW to ENE-WSW system for the post-rift section, which is compatible with the tension settings for the Sout American Plate since Albian. Local variations at the fluid pressure linked (or not) to sedimentary overload variation define local tension settings. This way, at the northeastern portion of the basin, the post-rift deformation was governed by a setting which σ 1 is sub-horizontal trending NE-SW and, σ 3 is sub-vertical, emphasizing a reverse fault situation. At the southwestern portion however there was characterized a strike slip fault setting, featuring σ 1 trending ENEWSW and σ3 trending NNW-SSE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural knowledge of the western portion of the Potiguar Basin is still in its infancy, especially these related to NW-trending fault systems. This paper analyzes the Poço Verde-Caraúbas Fault System, which was initially recognized in subsurface. The activities involved in this study correspond to remote-sensing analysis and, in particular, to the geometric and kinematic analysis of post-rift sequences of the basin. In addition, the study aimed to determine the stress fields operating in the area. The studies were carried out in an area of 1,000 km², located in the western portion of Potiguar Basin along the Poço Verde-Caraúbas Fault System, Rio Grande do Norte State. The remote sensing imagery indicates a predominance of NW-SE-trending lineaments, consistent with the fault system under study, followed by the NE-SW, N-S and E-W directions. The tectonic structures mapped were analyzed only in outcrops of the Jandaíra Formantion. They are joints (filled or not) in all directions, but with predominance of the NW-trending joints. Faults are usually N-S-trending normal faults and NW-SE and NE-SW-trending strike-slip faults. Geodynamic analysis identified two tectonic stress fields: the first field, "Field 1" is represented by an N-S-trending horizontal compression and E-W-trending horizontal extension. This field affected the Potiguar Basin at least until the Miocene. The second field, "Field 2", is represented by an E-W-trending horizontal compression and N-S-trending horizontal extension. This is the present-day stress field and has affected the Potiguar basin since the Pliocene

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This MSc thesis describes brittle deformation in two seismic zones located in north-eastern Brazil: João Câmara and São Rafael, Rio Grande do Norte State. Both areas show seismogenic faults, Samambaia and São Rafael, indicated by narrow zones of epicentres with a strike of 040o, a lenght of 30 km and 4 km, and a depth of 1-12 and 0,5-4 km, respectively. The first seismological and geological studies suggested blind faults or faults that were still in the beginning of the nucleation process. The region is under E-W-oriented compression and is underlain by Precambrian terrains, deformed by one or more orogenic cycles, which generated shear zones generally marked by strong pervasive foliation and sigmoidal shapes. The crystalline basement is capped by the Cretaceous Potiguar basin, which is also locally capped by Pliocene continental siliciclastic deposits (Barreiras Formation), and Quaternary alluvium. The main aim of this study was to map epicentral areas and find whether there are any surface geological or morphotectonic expression related to the seismogenic faults. A detailed geological map was carried out in both seismic areas in order to identify brittle structures and fault-related drainage/topographic features. Geological and morphotectonic evidence indicate that both seismogenic faults take place along dormant structures. They either cut Cenozoic rocks or show topographic expression, i.e., are related to topographic heights or depressions and straight river channels. Faults rocks in the Samambaia and São Rafael faults are cataclasite, fault breccia, fault gouge, pseudotachylyte, and quartz veins, which point to reactivation processes in different crustal levels. The age of the first Samambaia and the São Rafael faulting movement possibly ranges from late Precambrian to late Cretaceous. Both fault cut across Precambrian fabric. They also show evidence of brittle processes which took place between 4 and 12 km deep, which probably have not occurred in Cenozoic times. The findings are of great importance for regional seismic hazard. They indicate that fault zones are longer than previously suggested by seismogenic studies. According to the results, the methodology used during this thesis may also be useful in other neotectonic investigation in intraplate areas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present thesis was the seismic interpretation and seismic attribute analysis of the 3D seismic data from the Siririzinho high, located in the Sergipe Sub-basin (southern portion of Sergipe-Alagoas Basin). This study has enabled a better understanding of the stratigraphy and structure that the Siririzinho high experienced during its development. In a first analysis, we used two types of filters: the dip-steered median filter, was used to remove random noise and increase the lateral continuity of reflections, and fault-enhancement filter was applied to enhance the reflection discontinuities. After this filtering step similarity and curvature attributes were applied in order to identify and enhance the distribution of faults and fractures. The use of attributes and filtering greatly contributed to the identification and enhancement of continuity of faults. Besides the application of typical attributes (similarity and curvature) neural network and fingerprint techniques were also used, which generate meta-attributes, also aiming to highlight the faults; however, the results were not satisfactory. In a subsequent step, well log and seismic data analysis were performed, which allowed the understanding of the distribution and arrangement of sequences that occur in the Siririzinho high, as well as an understanding of how these units are affected by main structures in the region. The Siririzinho high comprises an elongated structure elongated in the NS direction, capped by four seismo-sequences (informally named, from bottom to top, the sequences I to IV, plus the top of the basement). It was possible to recognize the main NS-oriented faults, which especially affect the sequences I and II, and faults oriented NE-SW, that reach the younger sequences, III and IV. Finally, with the interpretation of seismic horizons corresponding to each of these sequences, it was possible to define a better understanding of geometry, deposition and structural relations in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baixa grande fault is located on the edge of the S-SW Potiguar Rift. It limits the south part of Umbuzeiro Graben and the Apodi Graben. Although a number of studies have associated the complex deformation styles in the hanging wall of the Baixa Grande Fault with geometry and displacement variations, none have applied the modern computational techniques such as geometrical and kinematic validations to address this problem. This work proposes a geometric analysis of the Baixa Fault using seismic interpretation. The interpretation was made on 3D seismic data of the Baixa Grande fault using the software OpendTect (dGB Earth Sciences). It was also used direct structural modeling, such as Analog Direct Modeling know as Folding Vectors and, 2D and 3D Direct Computational Modeling. The Folding Vectors Modeling presented great similarity with the conventional structural seismic interpretations of the Baixa Grande Fault, thus, the conventional interpretation was validated geometrically. The 2D direct computational modeling was made on some sections of the 3D data of the Baixa Grande Fault on software Move (Midland Valley Ltd) using the horizon modeling tool. The modeling confirms the influence of fault geometry on the hanging wall. The Baixa Grande Fault ramp-flat-ramp geometry generates synform on the concave segments of the fault and antiform in the convex segments. On the fault region that does not have segments angle change, the beds are dislocated without deformation, and on the listric faults occur rollover. On the direct 3D computational modeling, structural attributes were obtained as horizons on the hanging wall of the main fault, after the simulation of several levels of deformation along the fault. The occurrence of structures that indicates shortening in this modeling, also indicates that the antiforms on the Baixa Grande Fault were influenced by fault geometry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents new stress orientations and magnitudes from the Potiguar basin in the continental margin of Brazil. We analyzed breakout and drilled induced fractures derived from resistivity image logs run in ten oil wells. We also used direct Shmin measurements determined from hydraulic fractures and rock strength laboratory analysis. In addition, we compared these results with 19 earthquake focal mechanisms located in the crystalline basement. We observed that stress directions and magnitudes change across the basin and its basement. In the basin, the SHmax gradient of 20.0 MPa/km and the SHmax/Shmin ratio of 1.154 indicate a normal stress regime from 0.5 to 2.0 km, whereas the SHmax gradient of 24.5MPa/km and the SHmax/Shmin ratio of 1.396 indicate a strike slip stress regime from 2.5 to 4.0 km. The deeper strike-slip stress regime in the basin is similar to the regime in the basement at 1-12 km deep. This stress regime transition is consistent with an incipient tectonic inversion process in the basin. We also noted that the SHmax direction rotates from NW SE in the western part of the Potiguar basin to E W in its central and eastern part, following roughly the shoreline geometry. It indicates that local factors, as density contrast between continental and oceanic crust and sediment loading at the continental shelf influence the stress field. The concentration of fluid pressure in faults of the lowpermeability crystalline basement and its implications to establish a critically stressed fault regime in the basement is also discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 3D gravity modeling of the Potiguar rift basin consisted of a digital processing of gravity and aeromagnetic data, subsidized by the results of Euler deconvolution of gravity and magnetic data and the interpretation of seismic lines and wells descriptions. The gravity database is a compilation of independent geophysical surveys conducted by several universities, research institutions and governmental agencies. The aeromagnetic data are from the Bacia Potiguar and Plataforma Continental do Nordeste projects, obtained from the Brazilian Petroleum Agency (ANP). The solutions of the Euler Deconvolution allowed the analysis of the behavior of the rift main limits. While the integrated interpretation of seismic lines provided the delimitating horizons of the sedimentary formations and the basement top. The integration of these data allowed a 3D gravity modeling of basement topography, allowing the identification of a series of internal structures of the Potiguar rift, as well intra-basement structures without the gravity effect of the rift. The proposed inversion procedure of the gravity data allowed to identify the main structural features of the Potiguar rift, elongated in the NE-SW direction, and its southern and eastern faulted edges, where the sedimentary infill reachs thicknesses up to 5500 m. The southern boundary is marked by the Apodi and Baixa Grande faults. These faults seem to be a single NW-SE oriented fault with a strong bend to NE-SW direction. In addition, the eastern boundary of the rift is conditioned by the NE-SW trending Carnaubais fault system. It was also observed NW-SE oriented faults, which acted as transfer faults to the extensional efforts during the basin formation. In the central part of the residual anomaly map without the gravity effect of the rift stands out a NW-SE trending gravity high, corresponding to the Orós-Jaguaribe belt lithotypes. We also observe a gravity maximum parallel to the Carnaubais fault system. This anomaly is aligned to the eastern limit of the rift and reflects the contact of different crustal blocks, limited by the eastern ward counterpart of the Portalegre Shear Zone

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical structural modeling tool is being increasingly used in geology to provide information about the evolutionary stages (nucleation, growth) and geometry of geological structures at various scales. During the simulations of extensional tectonics, modeling provides a better understanding of fault geometry and evolution of the tectonic-stratigraphic architecture of rift basins. In this study a sandbox type apparatus was used to study the nucleation and development of basins influenced by previous structures within the basement, variably oriented as regards to the main extensional axis. Two types of experiments were conducted in order to: (i) simulate the individual (independent) development of half-grabens oriented orthogonal or oblique to the extension direction; (ii) simulate the simultaneous development of such half-grabens, orthogonal or oblique to the extension direction. In both cases the same materials (sand mixed with gypsum) were used and the same boundary conditions were maintained. The results were compared with a natural analogue represented by the Rio do Peixe Basin (one of the eocretaceous interior basins of Northeast Brazil). The obtained models allowed to observe the development of segmented border faults with listric geometry, often forming relay ramps, and the development of inner basins faults that affect only the basal strata, like the ones observed in the seismic sections of the natural analogue. The results confirm the importance of basement tectonic heritage in the geometry of rift depocenters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Camorim Oilfield, discovered in 1970 in the shallow water domain of the Sergipe Sub-basin, produces hydrocarbons from the Carmópolis Member of the Muribeca Formation, the main reservoir interval, interpreted as siliciclastics deposited in an alluvial-fluvial-deltaic context during a late rifting phase of Neoaptian age, in the Sergipe-Alagoas Basin. The structural setting of the field defines different production blocks, being associated to the evolution of the Atalaia High during the rift stage and subsequent reactivations, encompassing NE-SW trending major normal faults and NWEW trending secondary faults. The complexity of this field is related to the strong facies variation due to the interaction between continental and coastal depositional environments, coupled with strata juxtaposition along fault blocks. This study aims to geologically characterize its reservoirs, to provide new insights to well drilling locations in order to increase the recovery factor of the field. Facies analysis based on drill cores and geophysical logs and the 3D interpretation of a seismic volume, provide a high resolution stratigraphic analysis approach to be applied in this geodynamic transitional context between the rift and drift evolutionary stages of the basin. The objective was to define spatial and time relations between production zones and the preferential directions of fluid flow, using isochore maps that represent the external geometry of the deposits and facies distribution maps to characterize the internal heterogeneities of these intervals, identified in a 4th order stratigraphic zoning. This work methodology, integrated in a 3D geological modelling process, will help to optimize well drilling and hydrocarbons production. This methodology may be applied in other reservoirs in tectonic and depositional contexts similar to the one observed at Camorim, for example, the oil fields in the Aracaju High, Sergipe Sub-basin, which together represent the largest volume of oil in place in onshore Brazilian basins