922 resultados para sums of squares


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examines two panel data sets of 48 states from 1981 to 2009 and utilizes ordinary least squares (OLS) and fixed effects models to explore the relationship between rural Interstate speed limits and fatality rates and whether rural Interstate speed limits affect non-Interstate safety. Models provide evidence that rural Interstate speed limits higher than 55 MPH lead to higher fatality rates on rural Interstates though this effect is somewhat tempered by reductions in fatality rates for roads other than rural Interstates. These results provide some but not unanimous support for the traffic diversion hypothesis that rural Interstate speed limit increases lead to decreases in fatality rates of other roads. To the author’s knowledge, this paper is the first econometric study to differentiate between the effects of 70 MPH speed limits and speed limits above 70 MPH on fatality rates using a multi-state data set. Considering both rural Interstates and other roads, rural Interstate speed limit increases above 55 MPH are responsible for 39,700 net fatalities, 4.1 percent of total fatalities from 1987, the year limits were first raised, to 2009.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide (CO2) has been of recent interest due to the issue of greenhouse cooling in the upper atmosphere by species such as CO2 and NO. In the Earth’s upper atmosphere, between altitudes of 75 and 110 km, a collisional energy exchange occurs between CO2 and atomic oxygen, which promotes a population of ground state CO2 to the bend excited state. The relaxation of CO2 following this excitation is characterized by spontaneous emission of 15-μm. Most of this energy is emitted away from Earth. Due to the low density in the upper atmosphere, most of this energy is not reabsorbed and thus escapes into space, leading to a local cooling effect in the upper atmosphere. To determine the efficiency of the CO2- O atom collisional energy exchange, transient diode laser absorption spectroscopy was used to monitor the population of the first vibrationally excited state, 13CO2(0110) or ν2, as a function of time. The rate coefficient, kO(ν2), for the vibrational relaxation 13CO2 (ν2)-O was determined by fitting laboratory measurements using a home-written linear least squares algorithm. The rate coefficient, kO(ν2), of the vibrational relaxation of 13CO2(ν2), by atomic oxygen at room temperature was determined to be (1.6 ± 0.3 x 10-12 cm3 s-1), which is within the uncertainty of the rate coefficient previously found in this group for 12CO2(ν2) relaxation. The cold temperature kO(ν2) values were determined to be: (2.1 ± 0.8) x 10-12 cm3 s-1 at Tfinal = 274 K, (1.8 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 239 K, (2 ± 1) x 10-12 cm3 s-1 at Tfinal = 208 K, and (1.7 ± 0.3) x 10-12 cm3 s-1 at Tfinal = 186 K. These data did not show a definitive negative temperature dependence comparable to that found for 12CO2 previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theileria annulata and T. parva are closely related protozoan parasites that cause lymphoproliferative diseases of cattle. We sequenced the genome of T. annulata and compared it with that of T. parva to understand the mechanisms underlying transformation and tropism. Despite high conservation of gene sequences and synteny, the analysis reveals unequally expanded gene families and species-specific genes. We also identify divergent families of putative secreted polypeptides that may reduce immune recognition, candidate regulators of host-cell transformation, and a Theileria-specific protein domain [frequently associated in Theileria (FAINT)] present in a large number of secreted proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2D-3D registration of pre-operative 3D volumetric data with a series of calibrated and undistorted intra-operative 2D projection images has shown great potential in CT-based surgical navigation because it obviates the invasive procedure of the conventional registration methods. In this study, a recently introduced spline-based multi-resolution 2D-3D image registration algorithm has been adapted together with a novel least-squares normalized pattern intensity (LSNPI) similarity measure for image guided minimally invasive spine surgery. A phantom and a cadaver together with their respective ground truths were specially designed to experimentally assess possible factors that may affect the robustness, accuracy, or efficiency of the registration. Our experiments have shown that it is feasible for the assessed 2D-3D registration algorithm to achieve sub-millimeter accuracy in a realistic setup in less than one minute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advances in computational biology have made simultaneous monitoring of thousands of features possible. The high throughput technologies not only bring about a much richer information context in which to study various aspects of gene functions but they also present challenge of analyzing data with large number of covariates and few samples. As an integral part of machine learning, classification of samples into two or more categories is almost always of interest to scientists. In this paper, we address the question of classification in this setting by extending partial least squares (PLS), a popular dimension reduction tool in chemometrics, in the context of generalized linear regression based on a previous approach, Iteratively ReWeighted Partial Least Squares, i.e. IRWPLS (Marx, 1996). We compare our results with two-stage PLS (Nguyen and Rocke, 2002A; Nguyen and Rocke, 2002B) and other classifiers. We show that by phrasing the problem in a generalized linear model setting and by applying bias correction to the likelihood to avoid (quasi)separation, we often get lower classification error rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generalized linear mixed models (GLMMs) provide an elegant framework for the analysis of correlated data. Due to the non-closed form of the likelihood, GLMMs are often fit by computational procedures like penalized quasi-likelihood (PQL). Special cases of these models are generalized linear models (GLMs), which are often fit using algorithms like iterative weighted least squares (IWLS). High computational costs and memory space constraints often make it difficult to apply these iterative procedures to data sets with very large number of cases. This paper proposes a computationally efficient strategy based on the Gauss-Seidel algorithm that iteratively fits sub-models of the GLMM to subsetted versions of the data. Additional gains in efficiency are achieved for Poisson models, commonly used in disease mapping problems, because of their special collapsibility property which allows data reduction through summaries. Convergence of the proposed iterative procedure is guaranteed for canonical link functions. The strategy is applied to investigate the relationship between ischemic heart disease, socioeconomic status and age/gender category in New South Wales, Australia, based on outcome data consisting of approximately 33 million records. A simulation study demonstrates the algorithm's reliability in analyzing a data set with 12 million records for a (non-collapsible) logistic regression model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recurrent event data are largely characterized by the rate function but smoothing techniques for estimating the rate function have never been rigorously developed or studied in statistical literature. This paper considers the moment and least squares methods for estimating the rate function from recurrent event data. With an independent censoring assumption on the recurrent event process, we study statistical properties of the proposed estimators and propose bootstrap procedures for the bandwidth selection and for the approximation of confidence intervals in the estimation of the occurrence rate function. It is identified that the moment method without resmoothing via a smaller bandwidth will produce curve with nicks occurring at the censoring times, whereas there is no such problem with the least squares method. Furthermore, the asymptotic variance of the least squares estimator is shown to be smaller under regularity conditions. However, in the implementation of the bootstrap procedures, the moment method is computationally more efficient than the least squares method because the former approach uses condensed bootstrap data. The performance of the proposed procedures is studied through Monte Carlo simulations and an epidemiological example on intravenous drug users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.