858 resultados para sudden death


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spain, needing a bailout for its banks, was granted a vague promise by EZ leaders for up to €100 billion. The details remain obscure, yet they matter enormously. This column argues that the so-called ‘subordination effect’ of fresh official lending could put Spain on the slippery road to ruin. It argues that if sovereign bonds must be bought, this should be done in the secondary market which, would be on an equal footing with private investors and thus avoid the subordination trap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes to stratospheric sudden warmings (SSWs) over the coming century, as predicted by the Geophysical Fluid Dynamics Laboratory (GFDL) chemistry climate model [Atmospheric Model With Transport and Chemistry (AMTRAC)], are investigated in detail. Two sets of integrations, each a three-member ensemble, are analyzed. The first set is driven with observed climate forcings between 1960 and 2004; the second is driven with climate forcings from a coupled model run, including trace gas concentrations representing a midrange estimate of future anthropogenic emissions between 1990 and 2099. A small positive trend in the frequency of SSWs is found. This trend, amounting to 1 event/decade over a century, is statistically significant at the 90% confidence level and is consistent over the two sets of model integrations. Comparison of the model SSW climatology between the late 20th and 21st centuries shows that the increase is largest toward the end of the winter season. In contrast, the dynamical properties are not significantly altered in the coming century, despite the increase in SSW frequency. Owing to the intrinsic complexity of our model, the direct cause of the predicted trend in SSW frequency remains an open question.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the Arctic polar vortex during observed major mid-winter stratospheric sudden warmings (SSWs) is investigated for the period 1957-2002, using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Ertel’s potential vorticity (PV) and temperature fields. Time-lag composites of vertically weighted PV, calculated relative to the SSW onset time, are derived for both vortex displacement SSWs and vortex splitting SSWs, by averaging over the 15 recorded displacement and 13 splitting events. The evolving vertical structure of the polar vortex during a typical SSW of each type is clearly illustrated by plotting an isosurface of the composite PV field, and is shown to be very close to that observed during representative individual events. Results are verified by comparison with an elliptical diagnostic vortex moment technique. For both types of SSW, little variation is found between individual events in the orientation of the developing vortex relative to the underlying topography, i.e. the location of the vortex during SSWs of each type is largely fixed in relation to the Earth’s surface. During each type of SSW, the vortex is found to have a distinctive vertical structure. Vortex splitting events are typically barotropic, with the vortex split occurring near-simultaneously over a large altitude range (20-40 km). In the majority of cases, of the two daughter vortices formed, it is the ‘Siberian’ vortex that dominates over its ‘Canadian’ counterpart. In contrast, displacement events are characterized by a very clear baroclinic structure; the vortex tilts significantly westward with height, so that the top and bottom of the vortex are separated by nearly 180◦ longitude before the upper vortex is sheared away and destroyed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudden stratospheric warmings (SSWs) are usually considered to be initiated by planetary wave activity. Here it is asked whether small-scale variability (e.g., related to gravity waves) can lead to SSWs given a certain amount of planetary wave activity that is by itself not sufficient to cause a SSW. A highly vertically truncated version of the Holton–Mass model of stratospheric wave–mean flow interaction, recently proposed by Ruzmaikin et al., is extended to include stochastic forcing. In the deterministic setting, this low-order model exhibits multiple stable equilibria corresponding to the undisturbed vortex and SSW state, respectively. Momentum forcing due to quasi-random gravity wave activity is introduced as an additive noise term in the zonal momentum equation. Two distinct approaches are pursued to study the stochastic system. First, the system, initialized at the undisturbed state, is numerically integrated many times to derive statistics of first passage times of the system undergoing a transition to the SSW state. Second, the Fokker–Planck equation corresponding to the stochastic system is solved numerically to derive the stationary probability density function of the system. Both approaches show that even small to moderate strengths of the stochastic gravity wave forcing can be sufficient to cause a SSW for cases for which the deterministic system would not have predicted a SSW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stratospheric sudden warming in the Southern Hemisphere (SH) in September 2002 was unexpected for two reasons. First, planetary wave activity in the Southern Hemisphere is very weak, and midwinter warmings have never been observed, at least not since observations of the upper stratosphere became regularly available. Second, the warming occurred in a west phase of the quasi-biennial oscillation (QBO) in the lower stratosphere. This is unexpected because warmings are usually considered to be more likely in the east phase of the QBO, when a zero wind line is present in the winter subtropics and hence confines planetary wave propagation to higher latitudes closer to the polar vortex. At first, this evidence suggests that the sudden warming must therefore be simply a result of anomalously strong planetary wave forcing from the troposphere. However, recent model studies have suggested that the midwinter polar vortex may also be sensitive to the equatorial winds in the upper stratosphere, the region dominated by the semiannual oscillation. In this paper, the time series of equatorial zonal winds from two different data sources, the 40-yr ECMWF Re-Analysis (ERA) and the Met Office assimilated dataset, are reviewed. Both suggest that the equatorial winds in the upper stratosphere above 10 hPa were anomalously easterly in 2002. Idealized model experiments are described in which the modeled equatorial winds were relaxed toward these observations for various years to examine whether the anomalous easterlies in 2002 could influence the timing of a warming event. It is found that the 2002 equatorial winds speed up the evolution of a warming event in the model. Therefore, this study suggests that the anomalous easterlies in the 1–10-hPa region may have been a contributory factor in the development of the observed SH warming. However, it is concluded that it is unlikely that the anomalous equatorial winds alone can explain the 2002 warming event.