987 resultados para subunit VII
Resumo:
In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.
Resumo:
The beta 2 subunit of the interleukin (IL)-12 receptor (IL-12R beta 2) has been shown to play an essential role in differentiation of T helper 1 (Th1) cells in the murine and human system, and antibodies raised against IL-12R beta 2 recognized this molecule on human Th1 but not Th2 cells. However, while the cytokines secreted by clones of murine cells allowed the definition of distinct T helper cell subsets, bovine clones with polarized Th1 and Th2 cytokine profiles were rarely found. This raised important questions about the regulation of immune responses in cattle. We therefore cloned bovine IL-12R beta2 (boIL-12R beta 2) DNA complementary to RNA (cDNA) from the start codon to the 3' end of the mRNA. Comparison of boIL-12R beta 2 cDNA with human and murine IL-12R beta 2 cDNA sequences revealed homologies of 85 and 78%, respectively. The deduced protein sequence showed the hallmark motifs of the cytokine receptor superfamily including the four conserved cysteine residues, the WSXWS motif and fibronectin domains in the extracellular part as well as a STAT4 binding site in the intracellular part of the molecule. Using real-time reverse transcription-polymerase chain reaction, upregulation of mRNA expression of this molecule could be demonstrated in cultured bovine lymph node cells stimulated with phytohemagglutinin. Furthermore, cells with upregulated boIL-12R beta 2 mRNA responded with enhanced expression of interferon gamma to treatment with interleukin 12.
Resumo:
Palästina / Redaktion
Resumo:
Moritz Stern
Resumo:
Criticus
Resumo:
S. Schiffer
Resumo:
J. Bodenheimer
Resumo:
Martha Wolfenstein
Resumo:
Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^
Resumo:
Jacob Schorr
Resumo:
This is a sset of P. Chem. problems posed at a slightly higher level than the normal textbook level, for students who are continuing in the study of this subject.
Resumo:
Von Hern A. Treichel
Resumo:
Von P. Taubert